
JDO Mapping Guide (v5.0)



Table of Contents
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Persistence Capable Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Persistence-Aware Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Read-Only Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

New Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Subclass table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Superclass table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Complete table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Retrieval of inherited objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Fields/Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Persistent Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Persistent Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Overriding Superclass Field/Property MetaData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Field/Property positioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Making a field/property read-only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Field Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Primitive and java.lang Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

java.math types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Temporal Types (java.util, java.sql. java.time, Jodatime) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Collection/Map types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Enums. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Geospatial Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Other Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Generic Type Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

JDO Attribute Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

Types extending Collection/Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

TypeConverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Datastore Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Application Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

Nondurable Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

Compound Identity Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Versioning using a surrogate column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63



Versioning using a field/property of the class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Value Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

uuid-string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

uuid-hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

datastore-uuid-hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

uuid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

uuid-object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74

auid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

timestamp-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

Standalone ID generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

1-1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

Unidirectional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

Bidirectional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

1-N Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

equals() and hashCode(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Collection<PC> Unidirectional JoinTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Collection<PC> Unidirectional FK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Collection<PC> Bidirectional JoinTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Collection<PC> Bidirectional FK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

Using a List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

Collection<Simple> via JoinTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91

Collection<Simple> using AttributeConverter via column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

Collection<PC> via Shared JoinTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Collection<PC> via Shared FK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96

Map<PC,PC> using Join Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

Map<Simple,PC> using Join Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100

Map<PC,Simple> using Join Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

Map<Simple, Simple> using Join Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

Map<Simple, Simple> using AttributeConverter via column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

Map<Simple,PC> Unidirectional FK (key stored in value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

Map<Simple,PC> Unidirectional FK (key stored in value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

Map<PC,Simple> Unidirectional FK (value stored in key) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

N-1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

Unidirectional with ForeignKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109

Unidirectional with JoinTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110



Bidirectional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

M-N Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

equals() and hashCode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

Using Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

Using Ordered Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

Using indexed Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

Using Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Single Column Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Serialised Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

Arrays persisted into Join Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122

Arrays persisted using Foreign-Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Simple array stored in join table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

1-1 Interface Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

1-N Interface Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129

Dynamic Schema Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130

java.lang.Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

1-1/N-1 Object Relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

1-N Object Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

Serialised Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

Embedded Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

Embedding persistable objects (1-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Embedding Nested persistable objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139

Embedding Collection Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Embedding Map Keys/Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145

Serialised Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

Serialised Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150

Serialised Collection Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Serialised Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

Serialised Map Keys/Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

Serialised persistable Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154

Serialised Reference (Interface/Object) Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

Serialised Field to Local File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156

Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

Tables and Column names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

Column names for datastore-identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159

Column names for application-identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

Column nullability and default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

Column types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163

Columns with no field in the class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164



Position of column in a table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

RDBMS : Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

RDBMS : Datastore Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168

Secondary Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

Datastore Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181



To implement a persistence layer with JDO you firstly need to map the classes
and fields/properties that are involved in the persistence process. This can be as
simple as marking the classes as an @PersistenceCapable, or you can configure
down to the fine detail of precisely what schema it maps on to. The following
sections deal with the many options available. This guide takes you through the
many metadata options.

When mapping a class for JDO you can make use of metadata. This metadata can
be Java annotations, or can be XML metadata, or a mixture of both, or you could
even define it using a dynamic API. This is very much down to your own
personal preference but we try to present both ways here.



We advise trying to keep schema information out of annotations,
so that you avoid tying compiled code to a specific datastore. That
way you retain datastore-independence. This may not be a
concern for your project however.



Whilst the JDO spec only allows you to specify your mapping
information using JDO metadata (annotations, or JDO/ORM XML
metadata, or JDO Metadata API), it also allows you the option of
using JPA metadata (annotations or JPA XML metadata). This is
provided as a way of easily migrating across to JDO from JPA, for
example. Consult the DataNucleus JPA mappings docs for details.

In terms of the relative priority of annotations, JDO XML and ORM XML
metadata, the following figure highlights the process

1

metadata_api.html
../jpa/mapping.html


So you can provide the metadata via annotations solely, or via annotations plus
ORM XML Metadata overrides, or via JDO XML Metadata solely, or via JDO XML
Metadata plus ORM XML Metadata overrides, or finally via a Metadata API.

If you are using XML overrides for ORM, this definition will be merged in to the
base definition (annotations or JDO XML Metadata). Note that you can utilise
annotations for one class, and then JDO XML Metadata for another class should
you so wish.

One further alternative is if you have annotations in your classes, you provide
JDO XML Metadata (package.jdo), and also ORM XML Metadata (package-

2

annotations.html
annotations.html
metadata_xml.html
metadata_xml.html
metadata_xml.html
metadata_xml.html
metadata_xml.html
metadata_api.html


{mapping}.orm). In this case the annotations are the base representation,
applying overrides from JDO XML Metadata, and then overrides from the ORM
XML Metadata.



When not using the MetaData API we recommend that you use
either XML or annotations for the basic persistence information,
but always use XML for schema information. This is because it is
liable to change at deployment time and hence is accessible when
in XML form whereas in annotations you add an extra compile
cycle (and also you may need to deploy to some other datastore at
some point, hence needing a different deployment).

3



Classes
We have the following types of classes in DataNucleus JDO.

• PersistenceCapable - persistable class with full control over its persistence.

• PersistenceAware - a class that is not itself persisted, but that needs to access internals of
persistable classes.


In strict JDO all persistable classes need to have a default constructor. With
DataNucleus JDO this is not necessary, since all classes are enhanced before
persistence and the enhancer adds on a default constructor if one is not defined.

Persistence Capable Classes
The first thing to decide when implementing your persistence layer is which classes are to be
persisted. Let’s take a sample class (Hotel) as an example. We can define a class as persistable using
either annotations in the class, or XML metadata. Like this

@PersistenceCapable
public class Hotel
{
    ...
}

or using XML metadata

<class name="Hotel">
    ...
</class>

See also :-

• MetaData reference for <class> element

• Annotations reference for @PersistenceCapable


If any of your other classes access the fields of these persistable classes
directly then these other classes should be defined as PersistenceAware.

Persistence-Aware Classes
If a class is not itself persistable but it interacts with fields of persistable classes then it should be
marked as Persistence Aware. You do this as follows

4

#persistence_capable
#persistence_aware
metadata_xml.html#class
annotations.html#PersistenceCapable


@PersistenceAware
public class MyClass
{
    ...
}

or using XML metadata

<class name="MyClass" persistence-modifier="persistence-aware">
    ...
</class>

See also :-

• Annotations reference for @PersistenceAware

Read-Only Classes

You can, if you wish, make a class "read-only". This is a DataNucleus extension and you set it as
follows

@PersistenceCapable
@Extension(vendorName="datanucleus", key="read-only", value="true")
public class MyClass
{
    ...
}

or using XML metadata

<class name="MyClass">
    ...
    <extension vendor-name="datanucleus" key="read-only" value="true"/>
</class>

5

annotations.html#PersistenceAware


Inheritance
In Java it is a normal situation to have inheritance between classes. With JDO you have choices to
make as to how you want to persist your classes for the inheritance tree. For each class you select
how you want to persist that classes information. You have the following choices.

• The first and simplest to understand option is where each class has its own table in the
datastore. In JDO this is referred to as new-table.

• The second way is to select a class to have its fields persisted in the table of its subclass. In JDO
this is referred to as subclass-table

• The third way is to select a class to have its fields persisted in the table of its superclass. In JDO
this is known as superclass-table

• The final way is for all classes in an inheritance tree to have their own table containing all
fields. This is known as complete-table and is enabled by setting the inheritance strategy of the
root class to use this.

In order to demonstrate the various inheritance strategies we need an example. Here are a few
simple classes representing products in a (online) store. We have an abstract base class, extending
this to to provide something that we can represent any product by. We then provide a few
specialisations for typical products. We will use these classes later when defining how to persistent
these objects in the different inheritance strategies.

JDO imposes a "default" inheritance strategy if none is specified for a class. If the class is a base
class and no inheritance strategy is specified then it will be set to new-table for that class. If the
class has a superclass and no inheritance strategy is specified then it will be set to superclass-table.
This means that, when no strategy is set for the classes in an inheritance tree, they will default to

6

#inheritance_newtable
#inheritance_subclasstable
#inheritance_superclasstable
#inheritance_completetable


using a single table managed by the base class.

You can control the "default" strategy chosen by way of the persistence property
datanucleus.defaultInheritanceStrategy. The default is JDO2 which will give the above default
behaviour for all classes that have no strategy specified. The other option is TABLE_PER_CLASS
which will use "new-table" for all classes which have no strategy specified



At runtime, when you start up your PersistenceManagerFactory, JDO will only
know about the classes that the persistence API has been introduced to via
method calls. To alleviate this, particularly for subclasses of classes in an
inheritance relationship, you should make use of one of the many available Auto
Start Mechanisms


You must specify the identity of objects in the root persistable class of the
inheritance hierarchy. You cannot redefine it down the inheritance tree

See also :-

• MetaData reference for <inheritance> element

• MetaData reference for <discriminator> element

• Annotations reference for @Inheritance

• Annotations reference for @Discriminator

Discriminator

 Applicable to RDBMS, HBase, MongoDB, Cassandra

A discriminator is an extra "column" stored alongside data to identify the class of which that
information is part. It is useful when storing objects which have inheritance to provide a quick way
of determining the object type on retrieval. There are two types of discriminator supported by JDO

• class-name : where the actual name of the class is stored as the discriminator

• value-map : where a (typically numeric) value is stored for each class in question, allowing
simple look-up of the class it equates to

You specify a discriminator as follows

<class name="Product">
    <inheritance>
        <discriminator strategy="class-name"/>
    </inheritance>
    ...
</class>

or with annotations

7

persistence.html#autostart
persistence.html#autostart
metadata_xml.html#inheritance
metadata_xml.html#discriminator
annotations.html#Inheritance
annotations.html#Discriminator


@PersistenceCapable
@Discriminator(strategy=DiscriminatorStrategy.CLASS_NAME)
public class Product {...}

Alternatively if using value-map strategy then you need to provide the value map for all classes in
the inheritance tree that will be persisted in their own right.

@PersistenceCapable
@Discriminator(strategy=DiscriminatorStrategy.VALUE_MAP, value="PRODUCT")
public class Product {...}

@PersistenceCapable
@Discriminator(value="BOOK")
public class Book {...}

...

New Table

 Applicable to RDBMS

Here we want to have a separate table for each class. This has the advantage of being the most
normalised data definition. It also has the disadvantage of being slower in performance since
multiple tables will need to be accessed to retrieve an object of a sub type. Let’s try an example
using the simplest to understand strategy new-table. We have the classes defined above, and we
want to persist our classes each in their own table. We define the Meta-Data for our classes like this

8



<class name="AbstractProduct">
    <inheritance strategy="new-table"/>
    <field name="id" primary-key="true">
        <column name="PRODUCT_ID"/>
    </field>
    ...
</class>
<class name="Product">
    <inheritance strategy="new-table"/>
    ...
</class>
<class name="Book">
    <inheritance strategy="new-table"/>
    ...
</class>
<class name="TravelGuide">
    <inheritance strategy="new-table"/>
    ...
</class>
<class name="CompactDisc">
    <inheritance strategy="new-table"/>
    ...
</class>

or with annotations

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)
public class AbstractProduct {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)
public class Product {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)
public class Book {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)
public class TravelGuide {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)
public class CompactDisc {...}

We use the inheritance element to define the persistence of the inherited classes.

9



In the datastore, each class in an inheritance tree is represented in its own datastore table (tables
ABSTRACTPRODUCT, PRODUCT, BOOK, TRAVELGUIDE, and COMPACTDISC), with the subclasses
tables' having foreign keys between the primary key and the primary key of the superclass' table.

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into ABSTRACTPRODUCT, PRODUCT, BOOK, and TRAVELGUIDE.

Subclass table

 Applicable to RDBMS

DataNucleus supports persistence of classes in the tables of subclasses where this is required. This
is typically used where you have an abstract base class and it doesn’t make sense having a separate
table for that class. In our example we have no real interest in having a separate table for the
AbstractProduct class. So in this case we change one thing in the Meta-Data quoted above. We now
change the definition of AbstractProduct as follows

<class name="AbstractProduct">
    <inheritance strategy="subclass-table"/>
    <field name="id" primary-key="true">
        <column name="PRODUCT_ID"/>
    </field>
    ...
</class>

or with annotations

10



@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.SUBCLASS_TABLE)
public class AbstractProduct {...}

This subtle change of use the inheritance element has the effect of using the PRODUCT table for
both the Product and AbstractProduct classes, containing the fields of both classes.

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into PRODUCT, BOOK, and TRAVELGUIDE.


DataNucleus doesn’t currently fully support the use of classes defined with
subclass-table strategy as having relationships where there are more than a single
subclass that has a table. If the class has a single subclass with its own table then
there should be no problem.

Superclass table

 Applicable to RDBMS

DataNucleus supports persistence of classes in the tables of superclasses where this is required.
This has the advantage that retrieval of an object is a single SQL call to a single table. It also has the
disadvantage that the single table can have a very large number of columns, and database
readability and performance can suffer, and additionally that a discriminator column is required.
In our example, lets ignore the AbstractProduct class for a moment and assume that Product is
the base class. We have no real interest in having separate tables for the Book and CompactDisc
classes and want everything stored in a single table PRODUCT. We change our MetaData as follows

11



<class name="Product">
    <inheritance strategy="new-table">
        <discriminator strategy="class-name">
            <column name="PRODUCT_TYPE"/>
        </discriminator>
    </inheritance>
    <field name="id" primary-key="true">
        <column name="PRODUCT_ID"/>
    </field>
    ...
</class>
<class name="Book">
    <inheritance strategy="superclass-table"/>
    ...
</class>
<class name="TravelGuide">
    <inheritance strategy="superclass-table"/>
    ...
</class>
<class name="CompactDisc">
    <inheritance strategy="superclass-table"/>
    ...
</class>

or with annotations

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.NEW_TABLE)
public class AbstractProduct {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)
public class Product {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)
public class Book {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)
public class TravelGuide {...}

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.SUPERCLASS_TABLE)
public class CompactDisc {...}

This change of use of the inheritance element has the effect of using the PRODUCT table for all
classes, containing the fields of Product, Book, CompactDisc, and TravelGuide. You will also note

12



that we used a discriminator element for the Product class. The specification above will result in an
extra column (called PRODUCT_TYPE) being added to the PRODUCT table, and containing the class
name of the object stored. So for a Book it will have "com.mydomain.samples.store.Book" in that
column. This column is used in discriminating which row in the database is of which type. The final
thing to note is that in our classes Book and CompactDisc we have a field that is identically named.
With CompactDisc we have defined that its column will be called DISCTITLE since both of these
fields will be persisted into the same table and would have had identical names otherwise - this gets
around the problem.

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into the PRODUCT table only.

JDO allows two types of discriminators. The example above used a discriminator strategy of class-
name. This inserts the class name into the discriminator column so that we know what the class of
the object really is. The second option is to use a discriminator strategy of value-map. With this we
will define a "value" to be stored in this column for each of our classes. The only thing here is that
we have to define the "value" in the MetaData for ALL classes that use that strategy. So to give the
equivalent example :-

13



<class name="Product">
    <inheritance strategy="new-table">
        <discriminator strategy="value-map" value="PRODUCT">
            <column name="PRODUCT_TYPE"/>
        </discriminator>
    </inheritance>
    <field name="id" primary-key="true">
        <column name="PRODUCT_ID"/>
    </field>
    ...
</class>
<class name="Book">
    <inheritance strategy="superclass-table">
        <discriminator value="BOOK"/>
    </inheritance>
    ...
</class>
<class name="TravelGuide">
    <inheritance strategy="superclass-table">
        <discriminator value="TRAVELGUIDE"/>
    </inheritance>
    ...
</class>
<class name="CompactDisc">
    <inheritance strategy="superclass-table">
        <discriminator value="COMPACTDISC"/>
    </inheritance>
    ...
</class>

As you can see from the MetaData DTD it is possible to specify the column details for the
discriminator. DataNucleus supports this, but only currently supports the following values of jdbc-
type : VARCHAR, CHAR, INTEGER, BIGINT, NUMERIC. The default column type will be a VARCHAR.

Complete table


Applicable to RDBMS, Neo4j, NeoDatis, Excel, OOXML, ODF, HBase, Cassandra,
JSON, AmazonS3, GoogleStorage, MongoDB, LDAP

With "complete-table" we define the strategy on the root class of the inheritance tree and it applies
to all subclasses. Each class is persisted into its own table, having columns for all fields (of the class
in question plus all fields of superclasses). So taking the same classes as used above

14



<class name="Product">
    <inheritance strategy="complete-table"/>
    <field name="id" primary-key="true">
        <column name="PRODUCT_ID"/>
    </field>
    ...
</class>
<class name="Book">
    ...
</class>
<class name="TravelGuide">
    ...
</class>
<class name="CompactDisc">
    ...
</class>

or with annotations

@PersistenceCapable
@Inheritance(strategy=InheritanceStrategy.COMPLETE_TABLE)
public class AbstractProduct {...}

So the key thing is the specification of inheritance strategy at the root only. This then implies a
datastore schema as follows

So any object of explicit type Book is persisted into the table "BOOK". Similarly any TravelGuide is
persisted into the table "TRAVELGUIDE". In addition if any class in the inheritance tree is abstract
then it won’t have a table since there cannot be any instances of that type. DataNucleus currently
has limitations when using a class using this inheritance as the element of a collection.

Retrieval of inherited objects
JDO provides particular mechanisms for retrieving inheritance trees. These are accessed via the
Extent/Query interface. Taking our example above, we can then do

15



tx.begin();
Extent e = pm.getExtent(com.mydomain.samples.store.Product.class, true);
Query  q = pm.newQuery(e);
Collection c=(Collection)q.execute();
tx.commit();

The second parameter passed to pm.getExtent relates to whether to return subclasses. So if we pass
in the root of the inheritance tree (Product in our case) we get all objects in this inheritance tree
returned. You can, of course, use far more elaborate queries using JDOQL, but this is just to
highlight the method of retrieval of subclasses.

16



Auditing

 Applicable to RDBMS

With standard JDO you have no annotations available to automatically add timestamps into the
datastore against each record when it is persisted or updated. Whilst you can do this manually,
setting the field(s) in prePersist callbacks etc, DataNucleus provides some simple annotations to
make it simpler still.

import org.datanucleus.api.jdo.annotations.CreateTimestamp;
import org.datanucleus.api.jdo.annotations.UpdateTimestamp;

@PersistenceCapable
public class Hotel
{
    @CreateTimestamp
    Timestamp createTimestamp;

    @UpdateTimestamp
    Timestamp updateTimestamp;

    ...
}

In the above example we have 2 fields in the class that will have columns in the datastore. The field
createTimestamp will be persisted at INSERT with the Timestamp of the insert. The field
updateTimestamp will be persisted whenever any update is made to the object in the datastore,
with the Timestamp of the update.

17



Fields/Properties
Once we have defined a class to be persistable, we need to define how to persist the different
fields/properties that are to be persisted. There are two distinct modes of persistence definition; the
most common uses fields, whereas an alternative uses properties.

Persistent Fields
The most common form of persistence is where you have a field in a class and want to persist it to
the datastore. With this mode of operation DataNucleus will persist the values stored in the fields
into the datastore, and will set the values of the fields when extracting it from the datastore.


Requirement : you have a field in the class. This can be public, protected, private
or package access, but cannot be static or final.

Almost all Java field types are default persistent (if DataNucleus knows how to persist a type then it
defaults to persistent) so there is no real need to specify @Persistent to make the field persistent.

An example of how to define the persistence of a field is shown below

@PersistenceCapable
public class MyClass
{
    @Persistent
    Date birthday;

    @NotPersistent
    String someOtherField;
}

So, using annotations, we have marked the field birthday as persistent, whereas field
someOtherField is not persisted. Please note that in this particular case, Date is by default persistent
so we could omit the @Persistent annotation (with non-default-persistent types we would definitely
need the annotation). Using XML MetaData we would have done

<class name="MyClass">
    <field name="birthday" persistence-modifier="persistent"/>
    <field name="someOtherField" persistence-modifier="none"/>
</class>

Please note that the field Java type defines whether it is, by default, persistable.

Persistent Properties
A second mode of operation is where you have Java Bean-style getter/setter for a property. In this
situation you want to persist the output from getXXX to the datastore, and use the setXXX to load up

18



the value into the object when extracting it from the datastore.


Requirement : you have a property in the class with Java Bean getter/setter
methods. These methods can be public, protected, private or package access, but
cannot be static. The class must have BOTH getter AND setter methods.</td>

An example of how to define the persistence of a property is shown below

@PersistenceCapable
public class MyClass
{
    @Persistent
    Date getBirthday()
    {
        ...
    }

    void setBirthday(Date date)
    {
        ...
    }
}

So, using annotations, we have marked this class as persistent, and the getter is marked as
persistent. By default a property is non-persistent, so we have no need in specifying the
someOtherField as not persistent. Using XML MetaData we would have done

<class name="MyClass">
    <property name="birthday" persistence-modifier="persistent"/>
</class>

Overriding Superclass Field/Property MetaData
If you are using XML MetaData you can also override the MetaData for fields/properties of
superclasses. You do this by adding an entry for {class-name}.fieldName, like this

<class name="Hotel" detachable="true">
    ...
    <field name="HotelSuperclass.someField" default-fetch-group="false"/>
</class>

so we have changed the field "someField" specified in the persistent superclass "HotelSuperclass" to
not be part of the DFG.

19



Field/Property positioning
With some datastores (notably spreadsheets) it is desirable to be able to specify the relative position
of a column. The default (for DataNucleus) is just to put them in ascending alphabetical order. JDO
allows definition of this using the position attribute on a column. Here’s an example, using XML
metadata

<jdo>
    <package name="mydomain">
        <class name="Person" detachable="true" table="People">
            <field name="personNum">
                <column position="0"/>
            </field>
            <field name="firstName">
                <column position="1"/>
            </field>
            <field name="lastName">
                <column position="2"/>
            </field>
        </class>
    </package>
</jdo>

and with Annotations

@PersistenceCapable(table="People")
public class Person
{
    @Column(position=0)
    long personNum;

    @Column(position=1)
    String firstName;

    @Column(position=2)
    String lastName;
}

Making a field/property read-only

If you want to make a member read-only you can do it like this.

20



<jdo>
    <package name="mydomain">
        <class name="MyClass">
            <field name="myField">
                <extension vendor-name="datanucleus" key="insertable" value="false"/>
                <extension vendor-name="datanucleus" key="updateable" value="false"/>
            </field>
        </class>
    </package>
</jdo>

and with Annotations

@PersistenceCapable
public class MyClass
{
    @Extension(vendorName="datanucleus", key="insertable", value="false")
    @Extension(vendorName="datanucleus", key="updateable", value="false")
    String myField;

}

alternatively using a DataNucleus convenience annotation

import org.datanucleus.api.jdo.annotations.ReadOnly;

@PersistenceCapable
public class MyClass
{
    @ReadOnly
    String myField;

}

21



Field Types
When persisting a class, a persistence solution needs to know how to persist the types of each field
in the class. Clearly a persistence solution can only support a finite number of Java types; it cannot
know how to persist every possible type creatable. The JDO specification define lists of types that
are required to be supported by all implementations of those specifications. This support can be
conveniently split into two parts

• First-Class (FCO) Types : An object that can be referred to (object reference, providing a
relation) and that has an "identity" is termed a First Class Object (FCO). DataNucleus supports
the following Java types as FCO :

• persistable : any class marked for persistence can be persisted with its own identity in the
datastore

• interface where the field represents a persistable object

• java.lang.Object where the field represents a persistable object

• Second-Class (SCO) Types : An object that does not have an "identity" is termed a Second Class
Object (SCO). This is something like a String or Date field in a class, or alternatively a Collection
(that contains other objects). The sections below shows the currently supported SCO java types
in DataNucleus. The tables in these sections show

• default-fetch-group (DFG) : whether the field is retrieved by default when retrieving the
object itself

• proxy : whether the field is represented by a "proxy" that intercepts any operations to detect
whether it has changed internally.

• primary-key : whether the field can be used as part of the primary-key



With DataNucleus, all types that we have a way of persisting (i.e listed below) are
default persistent (meaning that you don’t need to annotate them in any way to
persist them). The only field types where this is not always true is for
java.lang.Object, some Serializable types, array of persistables, and java.io.File so
always safer to mark those as persistent.

Where you have a secondary type that can be persisted in multiple possible ways you select which
column type(s) by using the jdbc-type for the field, or alternatively you find the name of the internal
DataNucleus TypeConverter and use that via the metadata extension "type-converter-name".

If you have support for any additional types and would either like to contribute them, or have them
listed here, let us know. Supporting a new type is easy, typically involving a JDO AttributeConverter
if you can easily convert the type into a String or Long. See also the Java Types plugin-point. You
can also define more specific support for it with RDBMS datastores - the RDBMS Java Types plugin-
point

Handling of second-class types uses wrappers and bytecode enhancement with DataNucleus. This

22

#attributeconverter
../extensions/extensions.html#java_type
../extensions/extensions.html#rdbms_java_mapping
../extensions/extensions.html#rdbms_java_mapping


contrasts to what Hibernate uses (proxies), and what Hibernate imposes on you.

Primitive and java.lang Types
All primitive types and wrappers are supported and will be persisted into a single database
"column". Arrays of these are also supported, and can either be serialised into a single column, or
persisted into a join table (dependent on datastore).

Java Type DFG? Proxy
?

PK? Comments

boolean    Persisted as BOOLEAN, Integer (i.e 1,0),
String (i.e 'Y','N').

byte   

char   

double   

float   

int   

long   

short   

java.lang.Boolean    Persisted as BOOLEAN, Integer (i.e 1,0),
String (i.e 'Y','N').

java.lang.Byte   

java.lang.Character   

java.lang.Double   

java.lang.Float   

java.lang.Integer   

java.lang.Long   

java.lang.Short   

java.lang.Number    Persisted in a column capable of storing a
BigDecimal, and will store to the precision of
the object to be persisted. On reading back
the object will be returned typically as a
BigDecimal since there is no mechanism for
determing the type of the object that was
stored.

java.lang.String   

23



Java Type DFG? Proxy
?

PK? Comments

java.lang.StringBuffer    Persisted as String. The dirty check
mechanism for this type is limited to
immutable mode, which means if you
change a StringBuffer object field, you must
reassign it to the owner object field to make
sure changes are propagated to the
database.

java.lang.StringBuilder    Persisted as String. The dirty check
mechanism for this type is limited to
immutable mode, which means if you
change a StringBuffer object field, you must
reassign it to the owner object field to make
sure changes are propagated to the
database.

java.lang.Class    Persisted as String.

java.math types
BigInteger and BigDecimal are supported and persisted into a single numeric column by default.

Java Type DFG? Proxy
?

PK? Comments

java.math.BigDecimal    Persisted as DOUBLE or String. String can be
used to retain precision.

java.math.BigInteger    Persisted as INTEGER or String. String can
be used to retain precision.

Temporal Types (java.util, java.sql. java.time,
Jodatime)
DataNucleus supports a very wide range of temporal types, with flexibility in how they are
persisted.

Java Type DFG? Proxy
?

PK? Comments

java.sql.Date    Persisted as DATE, String, DATETIME or
Long.

java.sql.Time    Persisted as TIME, String, DATETIME or
Long.

java.sql.Timestamp    Persisted as TIMESTAMP, String or Long.

24



Java Type DFG? Proxy
?

PK? Comments

java.util.Calendar    Persisted as TIMESTAMP (inc Timezone),
DATETIME, String, or as (Long, String)
storing millis + timezone respectively

java.util.GregorianCalendar    Persisted as TIMESTAMP (inc Timezone),
DATETIME, String, or as (Long, String)
storing millis + timezone respectively

java.util.Date    Persisted as DATETIME, String or Long.

java.util.TimeZone    Persisted as String.

java.time.LocalDateTime    Persisted as Timestamp, String, or
DATETIME.

java.time.LocalTime    Persisted as TIME, String, or Long.

java.time.LocalDate    Persisted as DATE, String, or DATETIME.

java.time.OffsetDateTime    Persisted as Timestamp, String, or
DATETIME.

java.time.OffsetTime    Persisted as TIME, String, or Long.

java.time.MonthDay    Persisted as String, DATE, or as
(Integer,Integer) with the latter being
month+day respectively.

java.time.YearMonth    Persisted as String, DATE, or as
(Integer,Integer) with the latter being
year+month respectively.

java.time.Year    Persisted as Integer, or String.

java.time.Period    Persisted as String.

java.time.Instant    Persisted as TIMESTAMP, String, Long, or
DATETIME.

java.time.Duration    Persisted as String, Double (secs.nanos), or
Long (secs).

java.time.ZoneId    Persisted as String.

java.time.ZoneOffset    Persisted as String.

java.time.ZonedDateTime    Persisted as Timestamp, or String.

org.joda.time.DateTime    Requires datanucleus-jodatime plugin.
Persisted as TIMESTAMP or String.

org.joda.time.LocalTime    Requires datanucleus-jodatime plugin.
Persisted as TIME or String.

org.joda.time.LocalDate    Requires datanucleus-jodatime plugin.
Persisted as DATE or String.

25



Java Type DFG? Proxy
?

PK? Comments

org.joda.time.LocalDateTime    Requires datanucleus-jodatime plugin.
Persisted as TIMESTAMP, or String.

org.joda.time.Duration    Requires datanucleus-jodatime plugin.
Persisted as String or Long.

org.joda.time.Interval    Requires datanucleus-jodatime plugin.
Persisted as String or (TIMESTAMP,
TIMESTAMP).

org.joda.time.Period    Requires datanucleus-jodatime plugin.
Persisted as String.

Collection/Map types
DataNucleus supports a very wide range of collection, list and map types.

Java Type DFG? Proxy
?

PK? Comments

java.util.ArrayList    See the 1-N Lists Guide

java.util.BitSet    Persisted as collection by default, but will be
stored as String when the datastore doesn’t
provide for collection storage

java.util.Collection    See the 1-N Collections Guide

java.util.HashMap    See the 1-N Maps Guide

java.util.HashSet    See the 1-N Collections Guide

java.util.Hashtable    See the 1-N Maps Guide

java.util.LinkedHashMap    Persisted as a Map currently. No List-
ordering is supported. See the 1-N Maps
Guide

java.util.LinkedHashSet    Persisted as a Set currently. No List-ordering
is supported. See the 1-N Collections Guide

java.util.LinkedList    See the 1-N Lists Guide

java.util.List    See the 1-N Lists Guide

java.util.Map    See the 1-N Maps Guide

java.util.Properties    See the 1-N Maps Guide

java.util.PriorityQueue    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Lists Guide

26

mapping.html#one_many_list
mapping.html#one_many
mapping.html#one_many_map
mapping.html#one_many
mapping.html#one_many_map
mapping.html#one_many_map
mapping.html#one_many_map
mapping.html#one_many
mapping.html#one_many_list
mapping.html#one_many_list
mapping.html#one_many_map
mapping.html#one_many_map
mapping.html#one_many_list


Java Type DFG? Proxy
?

PK? Comments

java.util.Queue    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Lists Guide

java.util.Set    See the 1-N Collections Guide

java.util.SortedMap    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Maps Guide

java.util.SortedSet    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Collections Guide

java.util.Stack    See the 1-N Lists Guide

java.util.TreeMap    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Maps Guide

java.util.TreeSet    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Collections Guide

java.util.Vector    See the 1-N Lists Guide

com.google.common.collect.
Multiset

   Requires datanucleus-guava plugin. See the
1-N Collections Guide

Comparators

Containers that support a Comparator to order the elements of the set can specify it in metadata
like this.

@Element
@Extension(vendorName="datanucleus", key="comparator-name", value
="mydomain.model.MyComparator")
SortedSet<MyElementType> elements;

When instantiating the SortedSet field it will create it with a comparator of the specified class
(which must have a default constructor).

Enums
DataNucleus supports persisting Enums, and they can be stored as either the ordinal (numeric
column) or name (String column).

27

mapping.html#one_many_list
mapping.html#one_many
mapping.html#one_many_map
mapping.html#one_many
mapping.html#one_many_list
mapping.html#one_many_map
mapping.html#one_many
mapping.html#one_many_list
mapping.html#one_many
mapping.html#one_many


Java Type DFG? Proxy
?

PK? Comments

java.lang.Enum    Persisted as String (name) or int (ordinal).
Specified via jdbc-type.

A DataNucleus extension to this is where you have an Enum that defines its own "value"s for the
different enum options.


applicable to RDBMS, MongoDB, Cassandra, Neo4j, HBase, Excel, ODF and JSON
currently.

public enum MyColour
{
    RED((short)1), GREEN((short)3), BLUE((short)5), YELLOW((short)8);

    private short value;

    private MyColour(short value)
    {
        this.value = value;
    }

    public short getValue()
    {
        return value;
    }
}

With the default persistence it would persist as String-based, so persisting "RED" "GREEN" "BLUE"
etc. With jdbc-type as INTEGER it would persist 0, 1, 2, 3 being the ordinal values. If you define the
metadata as

@Extension(vendorName="datanucleus", key="enum-value-getter", value="getValue")
MyColour colour;

this will now persist 1, 3, 5, 8, being the "value" of each of the enum options. You can use this
method to persist "int", "short", or "String" types.

A DataNucleus extension is available for RDBMS datastores where you are storing the name of the
enum, and to put a CHECK constraint on the column. You specify it like this

28



@Extension(vendorName="datanucleus", key="enum-check-constraint", value="true")
MyColour colour;

Geospatial Types
DataNucleus has extensive support for Geospatial types. The datanucleus-geospatial plugin allows
using geospatial and traditional types simultaneously in persistent objects making DataNucleus a
single interface to read and manipulate any business data. The implementation of many of these
spatial types follows the OGC Simple Feature  specification, but adds further types where the
datastores support them.

Java Type DFG? Proxy
?

PK? Comments

java.awt.Point    Requires datanucleus-geospatial plugin.
Persisted as (int, int) on RDBMS, or as String
elsewhere.

java.awt.Rectangle    Requires datanucleus-geospatial plugin.
Persisted as (int, int, int, int) on RDBMS, or as
String elsewhere.

java.awt.Polygon    Requires datanucleus-geospatial plugin.
Persisted as (int[], int[], int) on RDBMS, or as
String elsewhere.

java.awt.geom.Line2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double)
or (float, float, float, float) on RDBMS, or as
String elsewhere.

java.awt.geom.Point2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double) or (float, float)
on RDBMS, or as String elsewhere.

java.awt.geom.Rectangle2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double)
or (float, float, float, float) on RDBMS, or as
String elsewhere.

java.awt.geom.Arc2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double, int) or (float, float, float,
float, float, float, int) on RDBMS, or as String
elsewhere.

java.awt.geom.CubicCurve2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double, doubel, double) or (float,
float, float, float, float, float, float, float) on
RDBMS, or as String elsewhere.

29

http://www.opengeospatial.org/standards/sfa


Java Type DFG? Proxy
?

PK? Comments

java.awt.geom.Ellipse2D    Requires datanucleus-geospatial plugin
Persisted as (double, double, double, double)
or (float, float, float, float) on RDBMS, or as
String elsewhere.

java.awt.geom.QuadCurve2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double) or (float, float, float, float,
float, float) on RDBMS, or as String
elsewhere.

java.awt.geom.RoundRectang
le2D

   Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double) or (float, float, float, float,
float, float) on RDBMS, or as String
elsewhere.

oracle.spatial.geometry.JGeo
metry

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry)

com.vividsolutions.jts.geom.
Geometry

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.
GeometryCollection

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.L
inearRing

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.L
ineString

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.
MultiLineString

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

30



Java Type DFG? Proxy
?

PK? Comments

com.vividsolutions.jts.geom.
MultiPoint

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.
MultiPolygon

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.P
oint

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.P
olygon

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

org.postgis.Geometry    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.GeometryCollecti
on

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it).Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.LinearRing    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.LineString    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

31



Java Type DFG? Proxy
?

PK? Comments

org.postgis.MultiLineString    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.MultiPoint    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.MultiPolygon    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.Point    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.Polygon    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.PGbox2d    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on PostGIS(geometry).

org.postgis.PGbox3d    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on PostGIS(geometry).

Some extra notes for implementation of JTS, JGeometry and PostGIS types support :-

• MySQL doesn’t support 3-dimensional geometries. Trying to persist them anyway results in
undefined behaviour, there may be an exception thrown or the z-ordinate might just get
stripped.

• Oracle supports additional data types like circles and curves that are not defined in the OGC SF
specification. Any attempt to read or persist one of those data types, if you’re not using Oracle,
will result in failure!

• PostGIS added support for curves in version 1.2.0, but at the moment the JDBC driver doesn’t
support them yet. Any attempt to read curves geometries will result in failure, for every

32



mapping scenario!

• Both PostGIS and Oracle have a system to add user data to specific points of a geometry. In
PostGIS these types are called measure types and the z-coordinate of every 2d-point can be used
to store arbitrary (numeric) data of double precision associated with that point. In Oracle this
user data is called LRS. datanucleus-geospatial tries to handle these types as gracefully as
possible. But the recommendation is to not use them, unless you have a mapping scenario that
is known to support them.

• PostGIS supports two additional types called box2d and box3d, that are not defined in OGC SF.
There are only mappings available for these types for PostGIS, any attempt to read or persist
one of those data types in another mapping scenario will result in failure!

datanucleus-geospatial has defined some metadata extensions that can be used to give additional
information about the geometry types in use. The position of these tags in the meta-data determines
their scope. If you use them inside a <field>-tag the values are only used for that field specifically, if
you use them inside the <package>-tag the values are in effect for all (geometry) fields of all classes
inside that package, etc.

33



<package name="org.datanucleus.samples.jtsgeometry">
    <extension vendor-name="datanucleus" key="spatial-dimension" value="2"/> [1]
    <extension vendor-name="datanucleus" key="spatial-srid" value="4326"/> [1]

    <class name="SampleGeometry" detachable="true">
        <field name="id"/>
        <field name="name"/>
        <field name="geom" persistence-modifier="persistent">
            <extension vendor-name="datanucleus" key="mapping" value="no-userdata"/>
[2]
        </field>
    </class>

    <class name="SampleGeometryCollectionM" table="samplejtsgeometrycollectionm"
detachable="true">
        <extension vendor-name="datanucleus" key="postgis-hasMeasure" value="true"/>
[3]
        <field name="id"/>
        <field name="name"/>
        <field name="geom" persistence-modifier="persistent"/>
    </class>

    <class name="SampleGeometryCollection3D" table="samplejtsgeometrycollection3d"
detachable="true">
        <extension vendor-name="datanucleus" key="spatial-srid" value="-1"/> [1]
        <extension vendor-name="datanucleus" key="spatial-dimension" value="3"/> [1]
        <field name="id"/>
        <field name="name"/>
        <field name="geom" persistence-modifier="persistent"/>
    </class>
</package>

• [1] - The srid & dimension values are used in various places. One of them is schema creation,
when using PostGIS, another is when you query the SpatialHelper.

• [2] - Every JTS geometry object can have a user data object attached to it. The default behaviour
is to serialize that object and store it in a separate column in the database. If for some reason
this isn’t desired, the mapping extension can be used with value "no-mapping" and DataNucleus-
Geospatial will ignore the user data objects.

• [3] - If you want to use measure types in PostGIS you have to define that using the postgis-
hasMeasure extension.

Other Types
Many other types are supported.

34



Java Type DFG? Proxy
?

PK? Comments

java.lang.Object    Either persisted serialised, or represents
multiple possible types

java.util.Currency    Persisted as String.

java.util.Locale    Persisted as String.

java.util.UUID    Persisted as String, or alternatively as native
uuid on PostgreSQL when specifying sql-
type="uuid".

java.util.Optional<type>    Persisted as the type of the generic type that
optional represents.

java.awt.Color    Persisted as String or as
(Integer,Integer,Integer,Integer) storing
red,green,blue,alpha respectively.

java.awt.image.BufferedImag
e

   Persisted as serialised.

java.net.URI    Persisted as String.

java.net.URL    Persisted as String.

java.io.Serializable    Persisted as serialised.

java.io.File    Only for RDBMS, persisted to
LONGVARBINARY, and retrieved as
streamable so as not to adversely affect
memory utilisation, hence suitable for large
files.

Arrays
The vast majority of the SCO types can also be persisted as arrays of that type as well. Here we list a
few of the combinations definitely supported as arrays, but others likely will work fine

Java Type DFG? Proxy
?

PK? Comments

boolean[]    See the Arrays Guide

byte[]    See the Arrays Guide

char[]    See the Arrays Guide

double[]    See the Arrays Guide

float[]    See the Arrays Guide

int[]    See the Arrays Guide

long[]    See the Arrays Guide

35

mapping.html#serialised
mapping.html#objects
mapping.html#serialised
mapping.html#serialised
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays


Java Type DFG? Proxy
?

PK? Comments

short[]    See the Arrays Guide

java.lang.Boolean[]    See the Arrays Guide

java.lang.Byte[]    See the Arrays Guide

java.lang.Character[]    See the Arrays Guide

java.lang.Double[]    See the Arrays Guide

java.lang.Float[]    See the Arrays Guide

java.lang.Integer[]    See the Arrays Guide

java.lang.Long[]    See the Arrays Guide

java.lang.Short[]    See the Arrays Guide

java.lang.String[]    See the Arrays Guide

java.util.Date[]    See the Arrays Guide

java.math.BigDecimal[]    See the Arrays Guide

java.math.BigInteger[]    See the Arrays Guide

java.lang.Enum[]    See the Arrays Guide

java.util.Locale[]    See the Arrays Guide

Persistable[]    See the Arrays Guide

Generic Type Variables
JDO does not explicitly require support for generic type variables. DataNucleus does support some
situations with generic type variables.

The first example that is largely supported is where you have an abstract base class with a generic
Type Variable and then you specify the type in the (concrete) subclass(es).

36

mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays


public abstract class Base<T>
{
    private T id;
}

public class Sub1 extends Base<Long>
{
    ...
}
public class Sub2 extends Base<Integer>
{
    ...
}

Similarly you use TypeVariables to form relations, like this

public abstract class Ownable<T extends Serializable> implements Serializable
{
    @ManyToOne(optional = false)
    private T owner;
}

public class Document extends Ownable<Person>
{
    ...
}

Clearly there are many combinations of where TypeVariables can be used and DataNucleus
supports a subset of these currently. Let us know if your generics usage isn’t supported.

JDO Attribute Converters
JDO3.2 introduces an API for conversion of an attribute of a PersistenceCapable object to its
datastore value. You can define a "converter" that will convert to the datastore value and back from
it, implementing this interface.

public interface AttributeConverter<X,Y>
{
    public Y convertToDatastore(X attributeValue);

    public X convertToAttribute (Y datastoreValue);
}

so if we have a simple converter to allow us to persist fields of type URL in a String form in the
datastore, like this

37



public class URLStringConverter implements AttributeConverter<URL, String>
{
    public URL convertToAttribute(String str)
    {
        if (str == null)
        {
            return null;
        }

        URL url = null;
        try
        {
            url = new java.net.URL(str.trim());
        }
        catch (MalformedURLException mue)
        {
            throw new IllegalStateException("Error converting the URL", mue);
        }
        return url;
    }

    public String convertToDatastore(URL url)
    {
        return url != null ? url.toString() : null;
    }
}

and now in our PersistenceCapable class we mark any URL field as being converted using this
converter

@PersistenceCapable
public class MyClass
{
    @PrimaryKey
    long id;

    @Convert(URLStringConverter.class)
    URL url;

    ...
}

Note that you can register converters as the default handler for a java type when constructing the
PMF via persistence properties. These properties should be of the form
javax.jdo.option.typeconverter.{javatype} and the value is the class name of the
AttributeConverter.

A further use of AttributeConverter is where you want to apply type conversion to the key/value of

38



a Map field, or to the element of a Collection field. The Collection element case is simple, you just
specify the @Convert against the field and it will be applied to the element. If you want to apply
type conversion to a key/value of a map do this.

@Key(converter=URLStringConverter.class)
Map<URL, OtherEntity> myMap;


You CANNOT use an AttributeConverter for a PersistenceCapable type. This is
because a PersistenceCapable type requires special treatment, such as attaching a
StateManager etc.

Types extending Collection/Map
Say you have your own type that extends Collection/Map. By default DataNucleus will not know
how to persist this. You could declare the type in your class as Collection/Map, but often you want to
refer to your own type. By default if a type extends Collection/Map then it will be marked as second
class, and that DataNucleus will treat it as Collection that should be wrapped (see above for
Collection/Map). If you have your type and want to just persist it into a single column then you
should do as follows

public class MyCollectionType extends Collection
{
    ...
}

@PersistenceCapable
public class MyClass
{
    MyCollectionType myField;

    ...
}

We now define a simple AttributeConverter to allow us to persist fields of this type in String form in
the datastore, like this

39



public class MyCollectionTypeStringConverter implements AttributeConverter
<MyCollectionType, String>
{
    public MyCollectionType convertToAttribute(String str)
    {
        if (str == null)
        {
            return null;
        }

        ...
        return myType;
    }

    public String convertToDatastore(MyCollectionType myType)
    {
        return myType != null ? myType.toString() : null;
    }
}

and now in our PersistenceCapable class we mark the myField as being converted using this
converter

@PersistenceCapable
public class MyClass
{
    @Convert(MyCollectionTypeStringConverter.class)
    MyCollectionType myField;

    ...
}

This is all well and good, it will map this type on to a single String-based column now. There
remains one problem, it is still thinking that this type should be wrapped (to intercept calls to the
Collection methods). Since our type hides all of that, we want to disable this. So we update the
mapping to be

@PersistenceCapable
public class MyClass
{
    @Convert(MyCollectionTypeStringConverter.class)
    @Extension(vendorName="datanucleus", key="is-second-class", value="false")
    MyCollectionType myField;

    ...
}

40



so now it is not attempted to be wrapped and will persist and retrieve fine.


If you want your extension of Collection/Map to be managed as a mutable_second
class type then you will need to provide a _wrapper class for it. Please refer to the
java_type extension for how to support this. In which case you could omit this is-
second-class metadata.

TypeConverters

By default DataNucleus will store the value using its own internal configuration/default for the java
type and for the datastore. The user can, however, change that by making use of a TypeConverter.
You firstly need to define the TypeConverter class (assuming you aren’t going to use an internal
DataNucleus converter, and for this you should refer to the TypeConverter plugin-point. Once you
have the converter defined, and registered in a plugin.xml under a name you then mark the
field/property to use it

@Extension(vendorName="datanucleus", key="type-converter-name", value="kryo-
serialise")
String longString;

In this case we have a String field but we want to serialise it, not using normal Java serialisation but
using the "Kryo" library. When it is stored it will be converted into a serialised form and when read
back in will be deserialised. You can see the example Kryo TypeConverter over on GitHub.


You CANNOT use a TypeConverter for a PersistenceCapable type. This is because a
PersistenceCapable type requires special treatment, such as attaching a
StateManager etc.

41

../extensions/extensions.html#java_type
https://github.com/datanucleus/datanucleus-core/tree/master/src/main/java/org/datanucleus/store/types/converters
https://github.com/datanucleus/datanucleus-core/tree/master/src/main/java/org/datanucleus/store/types/converters
../extensions/extensions.html#type_converter
https://github.com/datanucleus/datanucleus-typeconverter-kryo


Identity
All JDO-enabled persistable classes need to have an "identity" to be able to identify an object for
retrieval and relationships. There are three types of identity defineable using JDO. These are

• Datastore Identity : a surrogate column is added to the persistence of the persistable type, and
objects of this type are identified by the class plus the value in this surrogate column.

• Application Identity : a field, or several fields of the persistable type are assigned as being (part
of) the primary key.

• Nondurable Identity : the persistable type has no identity as such, so the only way to lookup
objects of this type would be via query for values of specific fields. This is useful for storing
things like log messages etc.

A further complication is where you use application identity but one of the fields forming the
primary key is a relation field. This is known as Compound Identity.



When you have an inheritance hierarchy, you should specify the identity type in
the base instantiable class for the inheritance tree. This is then used for all
persistent classes in the tree. This means that you can have superclass(es) without
any identity fields/properties but using subclass-table inheritance, and then the
base instantiable class is the first persistable class which has the identity defined.

Datastore Identity


Applicable to RDBMS, ODF, Excel, OOXML, HBase, Neo4j, MongoDB, XML,
Cassandra, JSON

With datastore identity you are leaving the assignment of id’s to DataNucleus and your class will
not have a field for this identity - it will be added to the datastore representation by DataNucleus. It
is, to all extents and purposes, a surrogate key that will have its own column in the datastore. To
specify that a class is to use datastore identity with JDO, you add the following to the MetaData for
the class.

<class name="MyClass" identity-type="datastore">
...
</class>

or using JDO annotations

@PersistenceCapable(identityType=IdentityType.DATASTORE)
public class MyClass
{
    ...
}

42

#datastore_identity
#application_identity
#nondurable_identity
#compound_identity


So you are specifying the identity-type as datastore. You don’t need to add this because datastore is
the default, so in the absence of any value, it will be assumed to be 'datastore'.

Datastore Identity : Generating identities

By choosing datastore identity you are handing the process of identity generation to the JDO
implementation. This does not mean that you haven’t got any control over how it does this. JDO
defines many ways of generating these identities and DataNucleus supports all of these and
provides some more of its own besides.

Defining which one to use is a simple matter of adding a MetaData element to your classes
definition, like this

@PersistenceCapable
@DatastoreIdentity(strategy="sequence", sequence="MY_SEQUENCE")
public class MyClass
{
    ...
}

or using XML metadata

<class name="MyClass" identity-type="datastore">
    <datastore-identity strategy="sequence" sequence="MY_SEQUENCE"/>
    ...
</class>

Some of the datastore identity strategies require additional attributes, but the specification is
straightforward.

See also :-

• Value Generation - strategies for generating ids

• MetaData reference for <datastore-identity> element

• Annotations reference for @DatastoreIdentity

Datastore Identity : Accessing the Identity

When using datastore identity, the class has no associated field so you can’t just access a field of
the class to see its identity. If you need a field to be able to access the identity then you should be
using application identity. There are, however, ways to get the identity for the datastore identity
case, if you have the object.

43

mapping.html#value_generation
metadata_xml.html#datastore-identity
annotations.html#DatastoreIdentity
mapping.html#application_identity


// Via the PersistenceManager
Object id = pm.getObjectId(obj);

// Via JDOHelper
Object id = JDOHelper.getObjectId(obj);

You should be aware however that the "identity" is in a complicated form, and is not available as a
simple integer value for example. Again, if you want an identity of that form then you should use
application identity

Datastore Identity : Implementation

When implementing datastore identity all JDO implementations have to provide a public class
that represents this identity. If you call pm.getObjectId(…) for a class using datastore identity you
will be passed an object which, in the case of DataNucleus will be of type
org.datanucleus.identity.OIDImpl. If you were to call "toString()" on this object you would get
something like

1[OID]mydomain.MyClass
This is made up of :-
    1 = identity number of this object
    class-name


The definition of this datastore identity is JDO implementation dependent. As a
result you should not use the org.datanucleus.identity.OID class in your
application if you want to remain implementation independent.

DataNucleus allows you the luxury of being able to provide your own datastore identity class so
you can have whatever formatting you want for identities.

Datastore Identity : Accessing objects by Identity

If you have the JDO identity then you can access the object with that identity like this

Object obj = pm.getObjectById(id);

You can also access the object from the object class name and the toString() form of the datastore
identity (e.g "1[OID]mydomain.MyClass") like this

Object obj = pm.getObjectById(MyClass.class, mykey);

44

mapping.html#application_identity
../extensions/extensions.html#datastoreidentity


Application Identity

 Applicable to all datastores.

With application identity you are taking control of the specification of id’s to DataNucleus.
Application identity requires a primary key class (unless you have a single primary-key field in which
case the PK class is provided for you), and each persistent capable class may define a different class
for its primary key, and different persistent capable classes can use the same primary key class, as
appropriate. With application identity the field(s) of the primary key will be present as field(s) of
the class itself. To specify that a class is to use application identity, you add the following to the
MetaData for the class.

<class name="MyClass" objectid-class="MyIdClass">
    <field name="myPrimaryKeyField" primary-key="true"/>
    ...
</class>

For JDO we specify the primary-key and objectid-class. The objectid-class is optional, and is the
class defining the identity for this class (again, if you have a single primary-key field then you can
omit it). Alternatively, if we are using annotations

@PersistenceCapable(objectIdClass=MyIdClass.class)
public class MyClass
{
    @Persistent(primaryKey="true")
    private long myPrimaryKeyField;
}

See also :-

• MetaData reference for <field> element

• Annotations reference for @Persistent

Application Identity : PrimaryKey Classes

When you choose application identity you are defining which fields of the class are part of the
primary key, and you are taking control of the specification of id’s to DataNucleus. Application
identity requires a primary key (PK) class, and each persistent capable class may define a different
class for its primary key, and different persistent capable classes can use the same primary key
class, as appropriate. If you have only a single primary-key field then there are built-in PK classes
so you can forget this section. Where you have more than 1 primary key field, you would define the
PK class like this

45

metadata_xml.html#field
annotations.html#Persistent


<class name="MyClass" identity-type="application" objectid-class="MyIdClass">
...
</class>

or using annotations

@PersistenceCapable(objectIdClass=MyIdClass.class)
public class MyClass
{
    ...
}

You now need to define the PK class to use. This is simplified for you because if you have only one
PK field then you dont need to define a PK class and you only define it when you have a
composite PK.

An important thing to note is that the PK can only be made up of fields of the following Java types

• Primitives : boolean, byte, char, int, long, short

• java.lang : Boolean, Byte, Character, Integer, Long, Short, String, Enum, StringBuffer

• java.math : BigInteger

• java.sql : Date, Time, Timestamp

• java.util : Date, Currency, Locale, TimeZone, UUID

• java.net : URI, URL

• persistable

The types in bold are JDO standard types. Any others are DataNucleus extensions and, as always,
check the specific datastore docs to see what is supported for your datastore.

Single PrimaryKey field

The simplest way of using application identity is where you have a single PK field, and in this case
you use SingleFieldIdentity  mechanism. This provides a PrimaryKey and you don’t need to
specify the objectid-class. Let’s take an example

public class MyClass
{
    long id;
    ...
}

46

../datastores/datastores.html
http://www.datanucleus.org/javadocs/3.2/javax/jdo/identity/SingleFieldIdentity.html


<class name="MyClass" identity-type="application">
    <field name="id" primary-key="true"/>
    ...
</class>

or using annotations

@PersistenceCapable
public class MyClass
{
    @PrimaryKey
    long id;
    ...
}

Note that we didn’t specify the JDO "objectid-class". You will, of course, have to give the field a value
before persisting the object, either by setting it yourself, or by using a value-strategy on that field.

If you need to create an identity of this form for use in querying via pm.getObjectById() then you
can create the identities in the following way

// For a "long" type :
javax.jdo.identity.LongIdentity id = new javax.jdo.identity.LongIdentity(myClass,
101);

// For a "String" type :
javax.jdo.identity.StringIdentity id = new javax.jdo.identity.StringIdentity(myClass,
"ABCD");

We have shown an example above for type "long", but you can also use this for the following

short, Short       - javax.jdo.identity.ShortIdentity
int, Integer       - javax.jdo.identity.IntIdentity
long, Long         - javax.jdo.identity.LongIdentity
String             - javax.jdo.identity.StringIdentity
char, Character    - javax.jdo.identity.CharIdentity
byte, Byte         - javax.jdo.identity.ByteIdentity
java.util.Date     - javax.jdo.identity.ObjectIdentity
java.util.Currency - javax.jdo.identity.ObjectIdentity
java.util.Locale   - javax.jdo.identity.ObjectIdentity

PrimaryKey : Rules for User-Defined classes

If you wish to use application identity and don’t want to use the "SingleFieldIdentity" builtin PK
classes then you must define a Primary Key class of your own. You can’t use classes like
java.lang.String, or java.lang.Long directly. You must follow these rules when defining your primary

47

mapping.html#value_generation


key class.

• the Primary Key class must be public

• the Primary Key class must implement Serializable

• the Primary Key class must have a public no-arg constructor, which might be the default
constructor

• the field types of all non-static fields in the Primary Key class must be serializable, and are
recommended to be primitive, String, Date, or Number types

• all serializable non-static fields in the Primary Key class must be public

• the names of the non-static fields in the Primary Key class must include the names of the
primary key fields in the JDO class, and the types of the common fields must be identical

• the equals() and hashCode() methods of the Primary Key class must use the value(s) of all the
fields corresponding to the primary key fields in the JDO class

• if the Primary Key class is an inner class, it must be static

• the Primary Key class must override the toString() method defined in Object, and return a String
that can be used as the parameter of a constructor

• the Primary Key class must provide a String constructor that returns an instance that compares
equal to an instance that returned that String by the toString() method.

• the Primary Key class must be only used within a single inheritence tree.

Please note that if one of the fields that comprises the primary key is in itself a persistable object
then you have Compound Identity and should consult the documentation for that feature which
contains its own example.



Since there are many possible combinations of primary-key fields it is impossible
for JDO to provide a series of builtin composite primary key classes. However the
DataNucleus enhancer provides a mechanism for auto-generating a primary-key
class for a persistable class. It follows the rules listed below and should work for
all cases. Obviously if you want to tailor the output of things like the PK toString()
method then you ought to define your own. The enhancer generation of primary-
key class is only enabled if you don’t define your own class.

PrimaryKey Example - Multiple Field

Here’s an example of a composite (multiple field) primary key class

@PersistenceCapable(objectIdClass=ComposedIdKey.class)
public class MyClass
{
    @PrimaryKey
    String field1;

48

mapping.html#compound_identity
enhancer.html


    @PrimaryKey
    String field2;
    ...
}

public class ComposedIdKey implements Serializable
{
    public String field1;
    public String field2;

    public ComposedIdKey ()
    {
    }

    /**
     * Constructor accepting same input as generated by toString().
     */
    public ComposedIdKey(String value)
    {
        StringTokenizer token = new StringTokenizer (value, "::");
        token.nextToken();               // className
        this.field1 = token.nextToken(); // field1
        this.field2 = token.nextToken(); // field2
    }

    public boolean equals(Object obj)
    {
        if (obj == this)
        {
            return true;
        }
        if (!(obj instanceof ComposedIdKey))
        {
            return false;
        }
        ComposedIdKey c = (ComposedIdKey)obj;

        return field1.equals(c.field1) && field2.equals(c.field2);
    }

    public int hashCode ()
    {
        return this.field1.hashCode() ^ this.field2.hashCode();
    }

    public String toString ()
    {
        // Give output expected by String constructor
        return this.getClass().getName() + "::"  + this.field1 + "::" + this.field2;
    }
}

49



Application Identity : Generating identities

By choosing application identity you are controlling the process of identity generation for this
class. This does not mean that you have a lot of work to do for this. JDO defines many ways of
generating these identities and DataNucleus supports all of these and provides some more of its
own besides.

See also :-

• Value Generation - strategies for generating ids

Application Identity : Accessing the Identity

When using application identity, the class has associated field(s) that equate to the identity. As a
result you can simply access the values for these field(s). Alternatively you could use a JDO identity-
independent way

// Using the PersistenceManager
Object id = pm.getObjectId(obj);

// Using JDOHelper
Object id = JDOHelper.getObjectId(obj);

Application Identity : Changing Identities

JDO allows implementations to support the changing of the identity of a persisted object. This is an
optional feature and DataNucleus doesn’t currently support it.

Application Identity : Accessing objects by Identity

If you have the JDO identity then you can access the object with that identity like this

Object obj = pm.getObjectById(id);

If you are using SingleField identity then you can access it from the object class name and the key
value like this

Object obj = pm.getObjectById(MyClass.class, mykey);

If you are using your own PK class then the mykey value is the toString() form of the identity of
your PK class.

Nondurable Identity

 Applicable to RDBMS, ODF, Excel, OOXML, HBase, Neo4j, MongoDB.

50

mapping.html#value_generation


With nondurable identity your objects will not have a unique identity in the datastore. This type
of identity is typically for log files, history files etc where you aren’t going to access the object by
key, but instead by a different parameter. In the datastore the table will typically not have a
primary key. To specify that a class is to use nondurable identity with JDO you would add the
following to the MetaData for the class.

<class name="MyClass" identity-type="nondurable">
...
</class>

or using annotations, for example

@PersistenceCapable(identityType=IdentityType.NONDURABLE)
public class MyClass
{
    ...
}

What this means for something like RDBMS is that the table (or view) of the class will not have a
primary-key.

Compound Identity Relationships
A JDO "compound identity relationship" is a relationship between two classes in which the child
object must coexist with the parent object and where the primary key of the child includes the
persistable object of the parent. The key aspect of this type of relationship is that the primary key of
one of the classes includes a persistable field (hence why is is referred to as Compound Identity).
This type of relation is available in the following forms

• 1-1 unidirectional

• 1-N collection bidirectional using ForeignKey

• 1-N map bidirectional using ForeignKey (key stored in value)


In the identity class of the compound persistable class you should define the
object-idclass of the persistable type being contained and use that type in the
identity class of the compound persistable type.


The persistable class that is contained cannot be using datastore identity, and
must be using application identity with an objectid-class


When using compound identity, it is best practice to define an object-idclass for
any persistable classes that are part of the primary key, and not rely on the built-
in identity types.

51



1-1 Relationship

Lets take the same classes as we have in the 1-1 Relationships. In the 1-1 relationships guide we
note that in the datastore representation of the User and Account the ACCOUNT table has a
primary key as well as a foreign-key to USER. In our example here we want to just have a primary
key that is also a foreign-key to USER. To do this we need to modify the classes slightly and add
primary-key fields and use "application-identity".

public class User
{
    long id;

    ...
}

public class Account
{
    User user;

    ...
}

In addition we need to define primary key classes for our User and Account classes

public class User
{
    long id;

    ... (remainder of User class)

    /**
     * Inner class representing Primary Key
     */
    public static class PK implements Serializable
    {
        public long id;

        public PK()
        {
        }

        public PK(String s)
        {
            this.id = Long.valueOf(s).longValue();
        }

        public String toString()
        {
            return "" + id;

52

mapping.html#one_one


        }

        public int hashCode()
        {
            return (int)id;
        }

        public boolean equals(Object other)
        {
            if (other != null && (other instanceof PK))
            {
                PK otherPK = (PK)other;
                return otherPK.id == this.id;
            }
            return false;
        }
    }
}

public class Account
{
    User user;

    ... (remainder of Account class)

    /**
     * Inner class representing Primary Key
     */
    public static class PK implements Serializable
    {
        public User.PK user; // Use same name as the real field above

        public PK()
        {
        }

        public PK(String s)
        {
            StringTokenizer token = new StringTokenizer(s,"::");

            this.user = new User.PK(token.nextToken());
        }

        public String toString()
        {
            return "" + this.user.toString();
        }

        public int hashCode()
        {
            return user.hashCode();

53



        }

        public boolean equals(Object other)
        {
            if (other != null && (other instanceof PK))
            {
                PK otherPK = (PK)other;
                return this.user.equals(otherPK.user);
            }
            return false;
        }
    }
}

To achieve what we want with the datastore schema we define the MetaData like this

<package name="mydomain">
    <class name="User" identity-type="application" objectid-class="User$PK">
        <field name="id" primary-key="true"/>
        <field name="login" persistence-modifier="persistent">
            <column length="20" jdbc-type="VARCHAR"/>
        </field>
    </class>

    <class name="Account" identity-type="application" objectid-class="Account$PK">
        <field name="user" persistence-modifier="persistent" primary-key="true">
            <column name="USER_ID"/>
        </field>
        <field name="firstName" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
        <field name="secondName" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
    </class>
</package>

So now we have the following datastore schema

Things to note :-

• You must use "application-identity" in both parent and child classes

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary

54



Key class of the parent

• See also the general instructions for Primary Key classes

• You can only have one "Account" object linked to a particular "User" object since the FK to the
"User" is now the primary key of "Account". To remove this restriction you could also add a
"long id" to "Account" and make the "Account.PK" a composite primary-key

1-N Collection Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In the 1-N relationships guide
we note that in the datastore representation of the Account and Address classes the ADDRESS
table has a primary key as well as a foreign-key to ACCOUNT. In our example here we want to have
the primary-key to ACCOUNT to include the foreign-key. To do this we need to modify the classes
slightly, adding primary-key fields to both classes, and use "application-identity" for both.

public class Account
{
    long id;

    Set<Address> addresses;

    ...
}

public class Address
{
    long id;

    Account account;

    ...
}

In addition we need to define primary key classes for our Account and Address classes

public class Account
{
    long id; // PK field

    Set addresses = new HashSet();

    ... (remainder of Account class)

    /**
     * Inner class representing Primary Key
     */
    public static class PK implements Serializable
    {
        public long id;

55

mapping.html#application_identity_primarykey
mapping.html#one_many_fk_bi


        public PK()
        {
        }

        public PK(String s)
        {
            this.id = Long.valueOf(s).longValue();
        }

        public String toString()
        {
            return "" + id;
        }

        public int hashCode()
        {
            return (int)id;
        }

        public boolean equals(Object other)
        {
            if (other != null && (other instanceof PK))
            {
                PK otherPK = (PK)other;
                return otherPK.id == this.id;
            }
            return false;
        }
    }
}

public class Address
{
    long id;
    Account account;

    .. (remainder of Address class)

    /**
     * Inner class representing Primary Key
     */
    public static class PK implements Serializable
    {
        public long id; // Same name as real field above
        public Account.PK account; // Same name as the real field above

        public PK()
        {
        }

56



        public PK(String s)
        {
            StringTokenizer token = new StringTokenizer(s,"::");
            this.id = Long.valueOf(token.nextToken()).longValue();
            this.account = new Account.PK(token.nextToken());
        }

        public String toString()
        {
            return "" + id + "::" + this.account.toString();
        }

        public int hashCode()
        {
            return (int)id ^ account.hashCode();
        }

        public boolean equals(Object other)
        {
            if (other != null && (other instanceof PK))
            {
                PK otherPK = (PK)other;
                return otherPK.id == this.id && this.account.equals(otherPK.account);
            }
            return false;
        }
    }
}

To achieve what we want with the datastore schema we define the MetaData like this

57



<package name="mydomain">
    <class name="Account" identity-type="application" objectid-class="Account$PK">
        <field name="id" primary-key="true"/>
        <field name="firstName" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
        <field name="secondName" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
        <field name="addresses" persistence-modifier="persistent" mapped-by="account">
            <collection element-type="Address"/>
        </field>
    </class>

    <class name="Address" identity-type="application" objectid-class="Address$PK">
        <field name="id" primary-key="true"/>
        <field name="account" persistence-modifier="persistent" primary-key="true">
            <column name="ACCOUNT_ID"/>
        </field>
        <field name="city" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
        <field name="street" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
    </class>
</package>

So now we have the following datastore schema

Things to note :-

• You must use "application-identity" in both parent and child classes

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes

• If we had omitted the "id" field from "Address" it would have only been possible to have one
"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "id" field too.

58

mapping.html#application_identity_primarykey


1-N Map Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In this guide we note that in the
datastore representation of the Account and Address classes the ADDRESS table has a primary key
as well as a foreign-key to ACCOUNT. In our example here we want to have the primary-key to
ACCOUNT to include the foreign-key. To do this we need to modify the classes slightly, adding
primary-key fields to both classes, and use "application-identity" for both.

public class Account
{
    long id;

    Map<String, Address> addresses;

    ...
}

public class Address
{
    long id;

    String alias;

    Account account;

    ...
}

In addition we need to define primary key classes for our Account and Address classes

public class Account
{
    long id; // PK field

    Set addresses = new HashSet();

    ... (remainder of Account class)

    /**
     * Inner class representing Primary Key
     */
    public static class PK implements Serializable
    {
        public long id;

        public PK()
        {
        }

59

mapping.html#one_many_map_fk_bi_key


        public PK(String s)
        {
            this.id = Long.valueOf(s).longValue();
        }

        public String toString()
        {
            return "" + id;
        }

        public int hashCode()
        {
            return (int)id;
        }

        public boolean equals(Object other)
        {
            if (other != null && (other instanceof PK))
            {
                PK otherPK = (PK)other;
                return otherPK.id == this.id;
            }
            return false;
        }
    }
}

public class Address
{
    String alias;
    Account account;

    .. (remainder of Address class)

    /**
     * Inner class representing Primary Key
     */
    public static class PK implements Serializable
    {
        public String alias; // Same name as real field above
        public Account.PK account; // Same name as the real field above

        public PK()
        {
        }

        public PK(String s)
        {
            StringTokenizer token = new StringTokenizer(s,"::");
            this.alias = Long.valueOf(token.nextToken()).longValue();
            this.account = new Account.PK(token.nextToken());

60



        }

        public String toString()
        {
            return alias + "::" + this.account.toString();
        }

        public int hashCode()
        {
            return alias.hashCode() ^ account.hashCode();
        }

        public boolean equals(Object other)
        {
            if (other != null && (other instanceof PK))
            {
                PK otherPK = (PK)other;
                return otherPK.alias.equals(this.alias) && this.account.equals(
otherPK.account);
            }
            return false;
        }
    }
}

To achieve what we want with the datastore schema we define the MetaData like this

61



<package name="com.mydomain">
    <class name="Account" objectid-class="Account$PK">
        <field name="id" primary-key="true"/>
        <field name="firstname" persistence-modifier="persistent">
            <column length="100" jdbc-type="VARCHAR"/>
        </field>
        <field name="lastname" persistence-modifier="persistent">
            <column length="100" jdbc-type="VARCHAR"/>
        </field>
        <field name="addresses" persistence-modifier="persistent" mapped-by="account">
            <map key-type="java.lang.String" value-type="com.mydomain.Address"/>
            <key mapped-by="alias"/>
        </field>
    </class>

    <class name="Address" objectid-class="Address$PK>
        <field name="account" persistence-modifier="persistent" primary-key="true"/>
        <field name="alias" null-value="exception" primary-key="true">
            <column name="KEY" length="20" jdbc-type="VARCHAR"/>
        </field>
        <field name="city" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
        <field name="street" persistence-modifier="persistent">
            <column length="50" jdbc-type="VARCHAR"/>
        </field>
    </class>
</package>

So now we have the following datastore schema

Things to note :-

• You must use "application-identity" in both parent and child classes

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes

• If we had omitted the "alias" field from "Address" it would have only been possible to have one
"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "alias" field too as part of the PK.

62

mapping.html#application_identity_primarykey


Versioning
JDO allows objects of classes to be versioned. The version is typically used as a way of detecting if
the object has been updated by another thread or PersistenceManager since retrieval using the
current PersistenceManager - for use by Optimistic Transactions. JDO defines several "strategies"
for generating the version of an object. The strategy has the following possible values

• none stores a number like the version-number but will not perform any optimistic checks.

• version-number stores a number (starting at 1) representing the version of the object.

• date-time stores a Timestamp representing the time at which the object was last updated. Note
that not all RDBMS store milliseconds in a Timestamp!

• state-image stores a Long value being the hash code of all fields of the object. DataNucleus
doesnt currently support this option

Versioning using a surrogate column
The default JDO mechanism for versioning of objects in RDBMS datastores is via a surrogate
column in the table of the class. In the MetaData you specify the details of the surrogate column
and the strategy to be used. For example

<package name="mydomain">
    <class name="User" table="USER">
        <version strategy="version-number" column="VERSION"/>
        <field name="name" column="NAME"/>
        ...
    </class>
</package>

alternatively using annotations

@PersistenceCapable
@Version(strategy=VersionStrategy.VERSION_NUMBER, column="VERSION")
public class MyClass
{
    ...
}

The specification above will create a table with an additional column called "VERSION" that will
store the version of the object.

Versioning using a field/property of the class

DataNucleus provides a valuable extension to JDO whereby you can have a field of your class store

63

persistence.html#locking_optimistic


the version of the object. This equates to JPA’s default versioning process whereby you have to have
a field present. To do this lets take a class

public class User
{
    String name;
    ...
    long myVersion;

}

and we want to store the version of the object in the field "myVersion". So we specify the metadata
as follows

<package name="mydomain">
    <class name="User" table="USER">
        <version strategy="version-number">
            <extension vendor-name="datanucleus" key="field-name" value="myVersion"/>
        </version>
        <field name="name" column="NAME"/>
        ...
        <field name="myVersion" column="VERSION"/>
    </class>
</package>

alternatively using annotations

@PersistenceCapable
@Version(strategy=VersionStrategy.VERSION_NUMBER, column="VERSION",
         extensions={@Extension(vendorName="datanucleus", key="field-name", value
="myVersion")})
public class MyClass
{
    protected long myVersion;
    ...
}

and so now objects of our class will have access to the version via the "myVersion" field.

64



Value Generation
Fields of a class can either have the values set by you the user, or you can set DataNucleus to
generate them for you. This is of particular importance with identity fields where you want unique
identities. You can use this value generation process with any field in JDO. There are many different
"strategies" for generating values, as defined by the JDO specifications, and also some DataNucleus
extensions. Some strategies are specific to a particular datastore, and some are generic. You should
choose the strategy that best suits your target datastore. The available strategies for JDO are :-

• native - this is the default and allows DataNucleus to choose the most suitable for the datastore.

• sequence - this uses a datastore sequence (if supported by the datastore)

• identity - these use autoincrement/identity/serial features in the datastore (if supported by the
datastore)

• increment - this is datastore neutral and increments a sequence value using a table.

• uuid-string - this is a UUID in string form

• uuid-hex - this is a UUID in hexadecimal form

• uuid - provides a pure UUID String utilising the JRE UUID class (DataNucleus extension)

• uuid-object - provides a pure UUID object utilising the JRE UUID class (DataNucleus extension)

• auid - provides a pure UUID following the OpenGroup standard (DataNucleus extension)

• timestamp - creates a java.sql.Timestamp of the current time (DataNucleus extension)

• timestamp-value - creates a long (millisecs) of the current time (DataNucleus extension)

• max - uses a max(column)+1 method (only in RDBMS) (DataNucleus extension)

• datastore-uuid-hex - UUID in hexadecimal form using datastore capabilities (only in RDBMS)
(DataNucleus extension)

• user-supplied value generators - allows you to hook in your own identity generator
(DataNucleus extension)

See also :-

• JDO MetaData reference for <class>

• JDO MetaData reference for <datastore-identity>

• JDO MetaData reference for <field>

• JDO Annotation reference for @DatastoreIdentity

• JDO Annotation reference for @Persistent


by defining a value-strategy for a field then it will, by default, always generate a
value for that field on persist. If the field can store nulls and you only want it to
generate the value at persist when it is null (i.e you haven’t assigned a value
yourself) then you can add the extension "strategy-when-notnull" as false

65

#valuegen_native
#valuegen_sequence
#valuegen_identity
#valuegen_increment
#valuegen_uuidstring
#valuegen_uuidhex
#valuegen_uuid
#valuegen_uuid_object
#valuegen_auid
#valuegen_timestamp
#valuegen_timestamp-value
#valuegen_max
#valuegen_datastoreuuidhex
../extensions/extensions.html#store_valuegenerator
metadata_xml.html#class
metadata_xml.html#datastore-identity
metadata_xml.html#field
annotations.html#DatastoreIdentity
annotations.html#Persistent


native
With this strategy DataNucleus will choose the most appropriate strategy for the datastore being
used. If you define the field as String-based then it will choose uuid-hex. Otherwise the field is
numeric in which case it chooses identity if supported, otherwise sequence if supported, otherwise
increment if supported otherwise throws an exception. On RDBMS you can get the behaviour used
up until DN v3.0 by specifying the persistence property
datanucleus.rdbms.useLegacyNativeValueStrategy as true

sequence
A sequence is a user-defined database function that generates a sequence of unique numeric ids.
The unique identifier value returned from the database is translated to a java type: java.lang.Long.
DataNucleus supports sequences for the following datastores:


Applicable to Oracle, PostgreSQL, SAPDB, DB2, Firebird, HSQLDB, H2, Derby,
SQLServer, NuoDB

To configure a class to use either of these generation methods with datastore identity you simply
add this to the class' Meta-Data

<sequence name="yourseq" datastore-sequence="YOUR_SEQUENCE_NAME"
strategy="noncontiguous"/>
<class name="myclass" ... >
    <datastore-identity strategy="sequence" sequence="yourseq"/>
    ...
</class>

or using annotations

@PersistenceCapable
@DatastoreIdentity(strategy=IdGeneratorStrategy.SEQUENCE, sequence="yourseq"/>
@Sequence(name="yourseq", datastore-sequence="YOUR_SEQUENCE_NAME", strategy
=NONCONTIGUOUS/>
public class MyClass

You replace "YOUR_SEQUENCE_NAME" with your sequence name. To configure a class to use either
of these generation methods using application identity you would add the following to the class'
Meta-Data

66

#valuegen_uuidhex
#valuegen_identity
#valuegen_sequence
#valuegen_increment


<sequence name="yourseq" datastore-sequence="YOUR_SEQUENCE_NAME"
strategy="noncontiguous"/>
<class name="myclass" ... >
    <field name="myfield" primary-key="true" value-strategy="sequence"
sequence="yourseq"/>
    ...
</class>

or using annotations

@PersistenceCapable
@Sequence(name="yourseq", datastore-sequence="YOUR_SEQUENCE_NAME" strategy
=NONCONTIGUOUS/>
public class MyClass
{
    @Persistent(valueStrategy=IdGeneratorStrategy.SEQUENCE, sequence="yourseq"/>
    private long myfield;
    ...
}

If the sequence does not yet exist in the database at the time DataNucleus needs a new unique
identifier, a new sequence is created in the database based on the JDO Meta-Data configuration.
Additional properties for configuring sequences are set in the JDO Meta-Data, see the available
properties below. Unsupported properties by a database are silently ignored by DataNucleus.

Property Description Required

key-min-value determines the minimum value a sequence can
generate

No

key-max-value determines the maximum value a sequence can
generate

No

key-database-cache-size specifies how many sequence numbers are to be
preallocated and stored in memory for faster
access. This is an optimization feature provided
by the database

No

sequence-catalog-name Name of the catalog where the sequence is. No.

sequence-schema-name Name of the schema where the sequence is. No.

This value generator will generate values unique across different JVMs

identity


Applicable to DB2 (IDENTITY), MySQL (AUTOINCREMENT), SQLServer
(IDENTITY), Sybase (IDENTITY), HSQLDB (IDENTITY), H2(IDENTITY), PostgreSQL
(SERIAL), Derby (IDENTITY), MongoDB (String), Neo4j (long), NuoDB (IDENTITY)

67



Auto-increment/identity/serial are primary key columns that are populated when a row is inserted
in the table. These use the databases own keywords on table creation and so rely on having the
table structure either created by DataNucleus or having the column with the necessary keyword.


This generation strategy should only be used if there is a single "root" table for
the inheritance tree. If you have more than 1 root table (e.g using subclass-table
inheritance) then you should choose a different generation strategy

For a class using datastore identity you need to set the strategy attribute. You can configure the
Meta-Data for the class something like this (replacing 'myclass' with your class name) :

<class name="MyClass">
    <datastore-identity strategy="identity"/>
    ...
</class>

or using annotations

@PersistenceCapable
@DatastoreIdentity(strategy=IdGeneratorStrategy.IDENTITY)
public class MyClass {...}

For a class using application identity you need to set the value-strategy attribute on the primary
key field. You can configure the Meta-Data for the class something like this (replacing 'myclass' and
'myfield' with your class and field names) :

<class name="myclass" identity-type="application">
    <field name="myfield" primary-key="true" value-strategy="identity"/<
    ...
</class>

or using annotations

@PersistenceCapable
public class MyClass
{
    @Persistent(valueStrategy=IdGeneratorStrategy.IDENTITY, primaryKey="true")
    long myfield;
}

Please be aware that if you have an inheritance tree with the base class defined as using "identity"
then the column definition for the PK of the base table will be defined as "AUTO_INCREMENT" or
"IDENTITY" or                     "SERIAL" (dependent on the RDBMS) and all subtables will NOT have this
identifier added to their PK column                     definitions. This is because the identities are
assigned in the base table (since all objects will have                     an entry in the base table).

68




If using optimistic transactions, this strategy will mean that the value is only set
when the object is actually persisted (i.e at flush() or commit())

This value generator will generate values unique across different JVMs

increment
This method is database neutral and uses a sequence table that holds an incrementing sequence
value. The unique identifier value returned from the database is translated to a java type:
java.lang.Long. This strategy will work with any datastore. This method require a sequence table in
the database and creates one if doesn’t exist.

To configure a datastore identity class to use this generation method you simply add this to the
classes Meta-Data.

<class name="MyClass" ... >
    <datastore-identity strategy="increment"/>
    ...
</class>

or using annotations

@PersistenceCapable
@DatastoreIdentity(strategy=IdGeneratorStrategy.INCREMENT)
public class MyClass {...}

To configure an application identity class to use this generation method you simply add this to the
class' Meta-Data. If your class is in an inheritance tree you should define this for the base class only.

<class name="MyClass" ... >
    <field name="myfield" primary-key="true" value-strategy="increment"/>
    ...
</class>

or using annotations

@PersistenceCapable
public class MyClass
{
    @Persistent(valueStrategy=IdGeneratorStrategy.INCREMENT, primaryKey="true");
    long myfield;
    ...
}

Additional properties for configuring this generator are set in the JDO Meta-Data, see the available

69



properties below. Unsupported properties are silently ignored by DataNucleus.

Property Description Required

key-initial-value First value to be allocated. No. Defaults to 1

key-cache-size number of unique identifiers to cache. The keys
are pre-allocated, cached and used on demand.
If key-cache-size is greater than 1, it may
generate holes in the object keys in the database,
if not all keys are used. Refer to persistence
property
datanucleus.valuegeneration.increment.alloc
ationSize

No. Defaults to 10

sequence-table-basis Whether to define uniqueness on the base class
name or the base table name. Since there is no
"base table name" when the root class has
"subclass-table" this should be set to "class"
when the root class has "subclass-table"
inheritance

No. Defaults to class,
but the other option is
table

sequence-name name for the sequence (overriding the
"sequence-table-basis" above). The row in the
table will use this in the PK column

No

sequence-table-name Table name for storing the sequence. No. Defaults to
SEQUENCE_TABLE

sequence-catalog-name Name of the catalog where the table is. No.

sequence-schema-name Name of the schema where the table is. No.

sequence-name-
column-name

Name for the column that represent sequence
names.

No. Defaults to
SEQUENCE_NAME

sequence-nextval-
column-name

Name for the column that represent incremeting
sequence values.

No. Defaults to
NEXT_VAL

table-name Name of the table whose column we are
generating the value for (used when we have no
previous sequence value and want a start point.

No.

column-name Name of the column we are generating the value
for (used when we have no previous sequence
value and want a start point.

No.

This value generator will generate values unique across different JVMs

uuid-string
This generator creates identities with 16 characters in string format. The identity contains the IP
address of the local machine where DataNucleus is running, as well as other necessary components
to provide uniqueness across time.

70




this 'string' contains non-standard characters so is not usable on all datastores.
You are better off with a standard UUID in most situations

This generator can be used in concurrent applications. It is especially useful in situations where
large numbers of transactions within a certain amount of time have to be made, and the additional
overhead of synchronizing the concurrent creation of unique identifiers through the database
would break performance limits. It doesn’t require datastore access to generate the identities and
so has performance benefits over some of the other generators.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass">
    <datastore-identity strategy="uuid-string"/>
    ...
</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass">
    <field name="myfield" primary-key="true" value-strategy="uuid-string"/>
    ...
</class>

uuid-hex
This generator creates identities with 32 characters in hexadecimal format. The identity contains
the IP address of the local machine where DataNucleus is running, as well as other necessary
components to provide uniqueness across time.

This generator can be used in concurrent applications. It is especially useful in situations where
large numbers of transactions within a certain amount of time have to be made, and the additional
overhead of synchronizing the concurrent creation of unique identifiers through the database
would break performance limits. It doesn’t require datastore access to generate the identities and
so has performance benefits over some of the other generators.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass">
    <datastore-identity strategy="uuid-hex"/>
    ...
</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

71



<class name="myclass">
    <field name="myfield" primary-key="true" value-strategy="uuid-hex"/>
    ...
</class>

datastore-uuid-hex

This method is like the "uuid-hex" option above except that it utilises datastore capabilities to
generate the UUIDHEX code. Consequently this only works on some RDBMS (MSSQL, MySQL). The
disadvantage of this strategy is that it makes a call to the datastore for each new UUID required. The
generated UUID is in the same form as the AUID strategy where identities are generated in memory
and so the AUID strategy is the recommended choice relative to this option.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass">
    <datastore-identity strategy="datastore-uuid-hex"/>
    ...
</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass">
    <field name="myfield" primary-key="true" value-strategy="datastore-uuid-hex"/>
    ...
</class>

max

This method is database neutral and uses the "select max(column) from table" + 1 strategy to create
unique ids. The unique identifier value returned from the database is translated to a java type:
java.lang.Long. It is however not recommended by DataNucleus since it makes a DB call for
every record to be inserted and hence is inefficient. Each DB call will run a scan in all table
contents causing contention and locks in the table. We recommend the use of either Sequence
or Identity based value generators (see below) - which you use would depend on your RDBMS.

For a class using datastore identity you need to add metadata something like the following

72



<class name="myclass">
    <datastore-identity strategy="max"/>
    ...
</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass">
    <field name="myfield" primary-key="true" value-strategy="max"/>
    ...
</class>

This value generator will NOT guarantee to generate values unique across different JVMs. This is
because it will select the "max+1" and before creating the record another thread may come in and
insert one.

uuid

This generator uses the JRE UUID class to generate String values. The values are 128-bit (36
character) of the form "0e400c2c-b3a0-4786-a0c6-f2607bf643eb"

This generator can be used in concurrent applications. It is especially useful in situations where
large numbers of transactions within a certain amount of time have to be made, and the additional
overhead of synchronizing the concurrent creation of unique identifiers through the database
would break performance limits.

For a class using datastore identity you need to add metadata something like the following

<class name="MyClass">
    <datastore-identity strategy="uuid"/>
    ...
</class>

or using annotations

@PersistenceCapable
@DatastoreIdentity(customStrategy="uuid")
public class MyClass {...}

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

73



<class name="MyClass" ... >
    <field name="myfield" primary-key="true" value-strategy="uuid"/>
    ...
</class>

or using annotations

public class MyClass
{
    @Persistent(customValueStrategy="uuid", primaryKey="true")
    String myfield;
}

This value generator will generate values unique across different JVMs

uuid-object

This generator uses the JRE UUID class to generate UUID values. The values are 128-bit (36
character) of the form "0e400c2c-b3a0-4786-a0c6-f2607bf643eb"

This generator can be used in concurrent applications. It is especially useful in situations where
large numbers of transactions within a certain amount of time have to be made, and the additional
overhead of synchronizing the concurrent creation of unique identifiers through the database
would break performance limits.

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass">
    <field name="myfield" primary-key="true" value-strategy="uuid-object"/>
    ...
</class>

Or using annotations

public class MyClass
{
    @Persistent(customValueStrategy="uuid-object")
    UUID myField;
}

This value generator will generate values unique across different JVMs

74



auid

This generator uses a Java implementation of DCE UUIDs to create unique identifiers without the
overhead of additional database transactions or even an open database connection. The identifiers
are Strings of the form "LLLLLLLL-MMMM-HHHH-CCCC-NNNNNNNNNNNN" where 'L', 'M', 'H', 'C'
and 'N' are the DCE UUID fields named time low, time mid, time high, clock sequence and node.

This generator can be used in concurrent applications. It is especially useful in situations where
large numbers of transactions within a certain amount of time have to be made, and the additional
overhead of synchronizing the concurrent creation of unique identifiers through the database
would break performance limits.

For a class using datastore identity you need to add metadata something like the following

<class name="myclass" ... >
    <datastore-identity strategy="auid"/>
    ...
</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass" ... >
    <field name="myfield" primary-key="true" value-strategy="auid"/>
    ...
</class>

This value generator will generate values unique across different JVMs

timestamp

This method will create a java.sql.Timestamp of the current time (at insertion in the datastore).

For a class using datastore identity you need to add metadata something like the following

<class name="myclass>
    <datastore-identity strategy="timestamp"/>
    ...
</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

75



<class name="myclass">
    <field name="myfield" primary-key="true" value-strategy="timestamp"/>
    ...
</class>

timestamp-value

This method will create a long of the current time in millisecs (at insertion in the datastore).

For a class using datastore identity you need to add metadata something like the following

<class name="myclass">
    <datastore-identity strategy="timestamp-value"/>
    ...
</class>

To configure an application identity class to use this generation method you simply add this to the
class' JDO Meta-Data.

<class name="myclass">
    <field name="myfield" primary-key="true" value-strategy="timestamp-value"/>
    ...
</class>

Standalone ID generation

This section describes how to use the DataNucleus Value Generator API for generating unique keys
for objects outside the DataNucleus (JDO) runtime. DataNucleus defines a framework for identity
generation and provides many builtin strategies for identities. You can make use of the same
strategies described above but for generating identities manually for your own use. The process is
described below

The DataNucleus Value Generator API revolves around 2 classes. The entry point for retrieving
generators is the ValueGenerationManager. This manages the appropriate ValueGenerator
classes. Value generators maintain a block of cached ids in memory which avoid reading the
database each time it needs a new unique id. Caching a block of unique ids provides you the best
performance but can cause "holes" in the sequence of ids for the stored objects in the database.

Let’s take an example. Here we want to obtain an identity using the TableGenerator ("increment"
above). This stores identities in a datastore table. We want to generate an identity using this. Here is
what we add to our code

76



PersistenceManagerImpl pm = (PersistenceManagerImpl) ... // cast your pm to impl ;

// Obtain a ValueGenerationManager
ValueGenerationManager mgr = new ValueGenerationManager();

// Obtain a ValueGenerator of the required type
Properties properties = new Properties();
properties.setProperty("sequence-name", "GLOBAL"); // Use a global sequence number
(for all tables)
ValueGenerator generator = mgr.createValueGenerator("MyGenerator",
    org.datanucleus.store.rdbms.valuegenerator.TableGenerator.class, props, pm
.getStoreManager(),
                new ValueGenerationConnectionProvider()
                {
                    RDBMSManager rdbmsManager = null;
                    ManagedConnection con;
                    public ManagedConnection retrieveConnection()
                    {
                        rdbmsManager = (RDBMSManager) pm.getStoreManager();
                        try
                        {
                            // important to use TRANSACTION_NONE like DataNucleus does
                            con = rdbmsManager.getConnection(Connection
.TRANSACTION_NONE);;
                            return con;
                        }
                        catch (SQLException e)
                        {
                            logger.error("Failed to obtain new DB connection for
identity generation!");
                            throw new RuntimeException(e);
                        }
                    }
                    public void releaseConnection()
                    {
                        try
                        {
                            con.close();
                            con = null;
                        }
                        catch (DataNucleusException e)
                        {
                            logger.error("Failed to close DB connection for identity
generation!");
                            throw new RuntimeException(e);
                        }
                        finally
                        {
                            rdbmsManager = null;
                        }
                    }

77



                });

// Retrieve the next identity using this strategy
Long identifier = (Long)generator.next();

Some ValueGenerators are specific to RDBMS datastores, and some are generic, so bear this in mind
when selecting and adding your own.

78



1-1 Relations
You have a 1-to-1 relationship when an object of a class has an associated object of another class
(only one associated object). It could also be between an object of a class and another object of the
same class (obviously). You can create the relationship in 2 ways depending on whether the 2
classes know about each other (bidirectional), or whether only one of the classes knows about the
other class (unidirectional). These are described below.


For RDBMS a 1-1 relation is stored as a foreign-key column(s). For non-RDBMS it
is stored as a String "column" storing the 'id' (possibly with the class-name
included in the string) of the related object.

Unidirectional
For this case you could have 2 classes, User and Account, as below.

public class Account
{
    User user;
}

public class User
{
    ...
}

so the Account class knows about the User class, but not vice-versa. If you define the annotations
for these classes as follows

public class Account
{
    ...

    @Column(name="USER_ID")
    User user;
}

public class User
{
    ...
}

or using XML metadata

79



<package name="mydomain">
    <class name="User" table="USER">
        ...
    </class>

    <class name="Account" table="ACCOUNT">
        ...
        <field name="user">
            <column name="USER_ID"/>
        </field>
    </class>
</package>

This contrasts with JPA mapping where you have to explicitly specify that it is a one-to-one relation!

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT and a column USER_ID), as shown below.

Things to note :-


Account has the object reference (and so owns the relation) to User and so its
table holds the foreign-key


If you call PM.deletePersistent() on the end of a 1-1 unidirectional relation without
the relation and that object is related to another object, an exception will typically
be thrown (assuming the datastore supports foreign keys). To delete this record
you should remove the other objects association first.


If you invoke an operation that will retrieve the one-to-one field, and you only
want it to get the foreign key value (and not join to the related table) you can add
the metadata extension fetch-fk-only (set to "true") to the field/property.

Bidirectional
For this case you could have 2 classes, User and Account again, but this time as below. Here the
Account class knows about the User class, and also vice-versa.

80



public class Account
{
    User user;

    ...
}

public class User
{
    Account account;

    ...
}

We create the 1-1 relationship with a single foreign-key. To do this you define the annotations as

public class Account
{
    ...

    @Column(name="USER_ID")
    User user;
}

public class User
{
    ...

    @Persistent(mappedBy="user")
    Account account;
}

or using XML metadata

<package name="mydomain">
    <class name="User" table="USER">
        ...
        <field name="account" mapped-by="user"/>
    </class>

    <class name="Account" table="ACCOUNT">
        ...
        <field name="user">
            <column name="USER_ID"/>
        </field>
    </class>
</package>

81



The difference is that we added mapped-by to the field of User. This represents the bidirectionality.

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT). With RDBMS the ACCOUNT table will have a column USER_ID (since RDBMS will
place the FK on the side without the "mapped-by"). Like this

With non-RDBMS datastores both tables will have a column containing the "id" of the related object,
that is USER will have an ACCOUNT column, and ACCOUNT will have a USER_ID column.


When forming the relation please make sure that you set the relation at BOTH
sides since DataNucleus would have no way of knowing which end is correct if
you only set one end.


If you invoke an operation that will retrieve the one-to-one field (of the non-
owner side), and you only want it to get the foreign key value (and not join to the
related table) you can add the metadata extension fetch-fk-only (set to "true") to
the field/property.

82



1-N Relations
You have a 1-N (one to many) or N-1 (many to one) when you have one object of a class that has a
Collection of objects of another class. Please note that Collections allow duplicates whilst Sets
don’t allow duplicates, and so the persistence process reflects this with the choice of primary
keys.. There are two principal ways in which you can represent this in a datastore : Join Table
(where a join table is used to provide the relationship mapping between the objects), and Foreign-
Key (where a foreign key is placed in the table of the object contained in the Collection.

The various possible relationships are described below.

• Collection<PC> Unidirectional using Join Table

• Collection<PC> Unidirectional using Foreign-Key

• Collection<PC> Bidirectional using Join Table

• Collection<PC> Bidirectional using Foreign-Key

• List<PC>

• Collection<Simple> using Join Table

• Collection<Simple> using AttributeConverter into single column

• Collection<PC> using shared join table (DataNucleus Extension)

• Collection<PC> using shared foreign key (DataNucleus Extension)

• Map<PC, PC> using join table

• Map<Simple, PC> using join table

• Map<Simple, Simple> using join table

• Map<Simple, Simple> using AttributeConverter into single column

• Map<PC, Simple> using join table

• Map<Simple,PC> - Unidirectional using foreign-key (key stored in the value class)

• Map<Simple,PC> - Bidirectional using foreign-key (key stored in the value class)

• Map<PC,Simple> - Unidirectional using foreign-key (value stored in the key class)



If you declare a field as a Collection, you can instantiate it as either Set-based or
as List-based. With a List an "ordering" column is required, whereas with a Set it
isn’t. Consequently DataNucleus needs to know if you plan on using it as Set-
based or List-based. You do this by adding an "order" element to the field if it is to
be instantiated as a List-based collection. If there is no "order" element, then it
will be assumed to be Set-based



Please note that RDBMS supports the full range of options on this page, whereas
other datastores (ODF, Excel, HBase, MongoDB, etc) persist the Collection in a
column in the owner object (as well as a column in the non-owner object when
bidirectional) rather than using join-tables or foreign-keys since those concepts
are RDBMS-only.

83

#one_many_join_uni
#one_many_fk_uni
#one_many_join_bi
#one_many_fk_bi
#one_many_list
#one_many_nonpc_join
#one_many_nonpc_converter
#one_many_shared_join
#one_many_shared_fk
#one_many_map_join_pc_pc
#one_many_map_join_simple_pc
#one_many_map_join_simple_simple
#one_many_map_converter_simple_simple
#one_many_map_join_pc_simple
#one_many_map_fk_uni_key
#one_many_map_fk_bi_key
#one_many_map_fk_uni_value


equals() and hashCode()
Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to
determine equality and whether an element is contained in the Collection. Note also that the
hashCode() should be consistent throughout the lifetime of a persistable object. By that we mean
that it should not use some basis before persistence and then use some other basis (such as the
object identity) after persistence, for this reason we do not recommend usage of
JDOHelper.getObjectId(obj) in the equals/hashCode methods.

Collection<PC> Unidirectional JoinTable
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, yet each Address knows nothing about the
Account objects that it relates to. Like this

public class Account
{
    Collection<Address> addresses

    ...
}

public class Address
{
    ...
}

If you define the annotations of the classes like this

public class Account
{
    ...

    @Persistent(table="ACCOUNT_ADDRESSES")
    @Join(column="ACCOUNT_ID_OID")
    @Element(column="ADDRESS_ID_EID")
    Collection<Address> addresses;
}

public class Address
{
    ...
}

or using XML metadata

84



<package name="com.mydomain">
    <class name="Account">
        ...
        <field name="addresses" table="ACCOUNT_ADDRESSES">
            <collection element-type="com.mydomain.Address"/>
            <join column="ACCOUNT_ID_OID"/>
            <element column="ADDRESS_ID_EID"/>
        </field>
    </class>

    <class name="Address">
        ...
    </class>
</package>


The crucial part is the join element on the field element - this signals to JDO to use
a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as
shown below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element
elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

85

#one_many_shared_join
#one_many_shared_join


• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

• The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You can
control this by adding an <order> element and specifying the column name for the order
column (within <field>).

• If you want the set to include nulls, you can turn on this behaviour by adding the DataNucleus
extension metadata "allow-nulls" to the <field> set to true

Collection<PC> Unidirectional FK
We have the same classes Account and Address as above for the join table case, but this time we
will store the "relation" as a foreign key in the Address class. So we define the annotations like this

public class Account
{
    ...

    @Element(column="ACCOUNT_ID")
    Collection<Address> addresses;
}

public class Address
{
    ...
}

<package name="com.mydomain">
    <class name="Account">
        ...
        <field name="addresses">
            <collection element-type="com.mydomain.Address"/>
            <element column="ACCOUNT_ID"/>
        </field>
    </class>

    <class name="Address">
        ...
    </class>
</package>

Again there will be 2 tables, one for Address, and one for Account.

86



Note that we have no "mapped-by" attribute specified, and also no "join" element.

In terms of operation within your classes of assigning the objects in the relationship. You have to
take your Account object and add the Address to the Account collection field since the Address
knows nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

• To specify the names of the columns used in the schema for the foreign key in the Address table
you should use the <element> element within the field of the collection.


Since each Address object can have at most one owner (due to the "Foreign Key")
this mode of persistence will not allow duplicate values in the Collection. If you
want to allow duplicate Collection entries, then use the "Join Table" variant
above.

Collection<PC> Bidirectional JoinTable
We have our 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, and now each Address has a reference to the
Account object that it relates to. Like this

public class Account
{
    Collection<Address> addresses;

    ...
}

public class Address
{
    Account account;

    ...
}

87



If you define the annotations for these classes as follows

public class Account
{
    ...

    @Persistent(mappedBy="account")
    @Join
    Collection<Address> addresses;
}

public class Address
{
    ...
}

or using XML metadata

<package name="com.mydomain">
    <class name="Account">
        ...
        <field name="addresses" mapped-by="account">
            <collection element-type="com.mydomain.Address"/>
            <join/>
        </field>
    </class>

    <class name="Address">
        ...
        <field name="account"/>
    </class>
</package>


The crucial part is the join element on the field element - this signals to JDO to use
a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as

shown below. 

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class

88



element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element with the
collection.

• To specify the names of the join table columns, use the column attribute of join, element
elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and element table, specify <foreign-key> below
either the <field> element or the <element> element.

• If you wish to share the join table with another relation then use the DataNucleus "shared join
table" extension

• The join table will, by default, be given a primary key. If you want to omit this then you can turn
it off using the DataNucleus metadata extension "primary-key" (within <join>) set to false.

• The column "ADPT_PK_IDX" is added by DataNucleus so that duplicates can be stored. You can
control this by adding an <order> element and specifying the column name for the order
column (within <field>).

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

• If you want the set to include nulls, you can turn on this behaviour by adding the extension
metadata "allow-nulls" to the <field> set to true

Collection<PC> Bidirectional FK
We have the same classes Account and Address as above for the join table case, but this time we
will store the "relation" as a foreign key in the Address class. If you define the annotations for these
classes as follows

public class Account
{
    ...

    @Persistent(mappedBy="account")
    Collection<Address> addresses;
}

public class Address
{
    @Column(name="ACCOUNT_ID")
    Account account;
}

89

#one_many_shared_join
#one_many_shared_join


or using XML metadata

<package name="com.mydomain">
    <class name="Account">
        ...
        <field name="addresses" mapped-by="account">
            <collection element-type="com.mydomain.Address"/>
        </field>
    </class>

    <class name="Address">
        ...
        <field name="account">
            <column name="ACCOUNT_ID"/>
        </field>
    </class>
</package>


The crucial part is the mapped-by on the "1" side of the relationship. This tells the
JDO implementation to look for a field called account on the Address class.

This will create 2 tables in the database, one for Address (including an ACCOUNT_ID to link to the
ACCOUNT table), and one for Account. Notice the subtle difference to this set-up to that of the Join
Table relationship earlier.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the foreign-key between container table and element table, specify <foreign-key>
below either the <field> element or the <element> element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.


Since each Address object can have at most one owner (due to the "Foreign Key")
this mode of persistence will not allow duplicate values in the Collection. If you
want to allow duplicate Collection entries, then use the "Join Table" variant
above.

90



Using a List
In the case of the relation field being a List (i.e ordered), you define the relation just like you would
for a Collection (above) but then define whether you want the relation to be either ordered or
indexed.

By default JDO operates with indexed lists (i.e adds a surrogate column in the element or in the join
table), and you simply add the following where required

@Order

or using XML

<order/>

If you have defined the field type as a List then this is not required to be added unless you want to
configure details of the order column.

DataNucleus also supports ordered lists whereby the elements of the List are ordered according to
some field (or fields) of the element.

If you have an element with a field called "city" then this specification will use that field for
ordering (and not add a surrogate ordering column.

@Order(extensions=@Extension(vendorName="datanucleus", key="list-ordering", value
="city ASC"))

<order>
    <extension vendor-name="datanucleus" key="list-ordering" value="city ASC"/>
</order>

Collection<Simple> via JoinTable
All of the examples above show a 1-N relationship between 2 persistable classes. If you want the
element to be primitive or Object types then follow this section. For example, when you have a
Collection of Strings. This will be persisted in the same way as the "Join Table" examples above. A
join table is created to hold the collection elements. Let’s take our example. We have an Account
that stores a Collection of addresses. These addresses are simply Strings. We define the annotations
like this

91



public class Account
{
    ...

    @Persistent
    @Join
    @Element(column="ADDRESS")
    Collection<String> addresses;
}

or using XML metadata

<package name="com.mydomain">
    <class name="Account">
        ...
        <field name="addresses" persistence-modifier="persistent">
            <collection element-type="java.lang.String"/>
            <join/>
            <element column="ADDRESS"/>
        </field>
    </class>
</package>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". In our MetaData we
used the <element> tag to specify the column name to use for the actual address String.


the column ADPT_PK_IDX is added by DataNucleus so that duplicates can be
stored. You can control the name of this column by adding an <order> element
and specifying the column name for the order column (within <field>).

Collection<Simple> using AttributeConverter via
column
Just like in the above example, here we have a Collection of simple types. In this case we are
wanting to store this Collection into a single column in the owning table. We do this by using a JDO
AttributeConverter.

92



public class Account
{
    ...

    @Persistent
    @Convert(CollectionStringToStringConverter.class)
    @Column(name="ADDRESSES")
    Collection<String> addresses;
}

and then define our converter. You can clearly define your conversion process how you want it.
You could, for example, convert the Collection into comma-separated strings, or could use JSON, or
XML, or some other format.

public class CollectionStringToStringConverter implements AttributeConverter
<Collection<String>, String>
{
    public String convertToDatastore(Collection<String> attribute)
    {
        if (attribute == null)
        {
            return null;
        }

        StringBuilder str = new StringBuilder();
        ... convert Collection to String
        return str.toString();
    }

    public Collection<String> convertToAttribute(String columnValue)
    {
        if (columnValue == null)
        {
            return null;
        }

        Collection<String> coll = new HashSet<String>();
        ... convert String to Collection
        return coll;
    }
}

Collection<PC> via Shared JoinTable

The relationships using join tables shown above rely on the join table relating to the relation in
question. DataNucleus allows the possibility of sharing a join table between relations. The example

93



below demonstrates this. We take the example as show above (1-N Unidirectional Join table
relation), and extend Account to have 2 collections of Address records. One for home addresses
and one for work addresses, like this

public class Account
{
    Collection<Address> workAddresses;

    Collection<Address> homeAddresses;

    ...
}

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

import org.datanucleus.api.jdo.annotations.SharedRelation;

public class Account
{
    ...

    @Persistent
    @Join(table="ACCOUNT_ADDRESSES", columns={@Column(name="ACCOUNT_ID_OID")})
    @Element(columns={@Column(name="ADDRESS_ID_EID")})
    @SharedRelation(column="ADDRESS_TYPE", value="work")
    Collection<Address> workAddresses;

    @Persistent
    @Join(table="ACCOUNT_ADDRESSES", columns={@Column(name="ACCOUNT_ID_OID")})
    @Element(columns={@Column(name="ADDRESS_ID_EID")})
    @SharedRelation(column="ADDRESS_TYPE", value="home")
    Collection<Address> homeAddresses;

    ...
}

or using XML metadata

94

#one_many_join_uni


<package name="com.mydomain">
    <class name="Account">
        ...
        <field name="workAddresses" persistence-modifier="persistent"
table="ACCOUNT_ADDRESSES">
            <collection element-type="com.mydomain.Address"/>
            <join column="ACCOUNT_ID_OID"/>
            <element column="ADDRESS_ID_EID"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-column"
value="ADDRESS_TYPE"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-pk"
value="true"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-value"
value="work"/>
        </field>
        <field name="homeAddresses" persistence-modifier="persistent"
table="ACCOUNT_ADDRESSES">
            <collection element-type="com.mydomain.Address"/>
            <join column="ACCOUNT_ID_OID"/>
            <element column="ADDRESS_ID_EID"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-column"
value="ADDRESS_TYPE"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-pk"
value="true"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-value"
value="home"/>
        </field>
    </class>

    <class name="Address">
        ...
    </class>
</package>

So we have defined the same join table for the 2 collections "ACCOUNT_ADDRESSES", and the same
columns in the join table, meaning that we will be sharing the same join table to represent both
relations. The important step is then to define the 3 DataNucleus extension tags. These define a
column in the join table (the same for both relations), and the value that will be populated when a
row of that collection is inserted into the join table. In our case, all "home" addresses will have a
value of "home" inserted into this column, and all "work" addresses will have "work" inserted. This
means we can now identify easily which join table entry represents which relation field.

This results in the following database schema

95



Collection<PC> via Shared FK

The relationships using foreign keys shown above rely on the foreign key relating to the relation in
question. DataNucleus allows the possibility of sharing a foreign key between relations between the
same classes. The example below demonstrates this. We take the example as show above (1-N
Unidirectional Foreign Key relation), and extend Account to have 2 collections of Address records.
One for home addresses and one for work addresses, like this

public class Account
{
    Collection<Address> workAddresses;

    Collection<Address> homeAddresses;

    ...
}

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

import org.datanucleus.api.jdo.annotations.SharedRelation;

public class Account
{
    ...

    @Persistent
    @SharedRelation(column="ADDRESS_TYPE", value="work")
    Collection<Address> workAddresses;

    @Persistent
    @SharedRelation(column="ADDRESS_TYPE", value="home")
    Collection<Address> homeAddresses;

    ...
}

or using XML metadata

96

#one_many_fk_uni


<package name="com.mydomain">
    <class name="Account">
        ...
        <field name="workAddresses" persistence-modifier="persistent">
            <collection element-type="com.mydomain.Address"/>
            <element column="ACCOUNT_ID_OID"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-column"
value="ADDRESS_TYPE"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-value"
value="work"/>
        </field>
        <field name="homeAddresses" persistence-modifier="persistent">
            <collection element-type="com.mydomain.Address"/>
            <element column="ACCOUNT_ID_OID"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-column"
value="ADDRESS_TYPE"/>
            <extension vendor-name="datanucleus" key="relation-discriminator-value"
value="home"/>
        </field>
    </class>

    <class name="Address">
        ...
    </class>
</package>

So we have defined the same foreign key for the 2 collections "ACCOUNT_ID_OID", The important
step is then to define the 2 DataNucleus extension tags (@SharedRelation annotation). These define
a column in the element table (the same for both relations), and the value that will be populated
when a row of that collection is inserted into the element table. In our case, all "home" addresses
will have a value of "home" inserted into this column, and all "work" addresses will have "work"
inserted. This means we can now identify easily which element table entry represents which
relation field.

This results in the following database schema

Map<PC,PC> using Join Table
Here we have a Map field, with key and value as persistable classes.

97



@PersistenceCapable
public class Account
{
    ...
    Map<Name, Address> addresses;
}

@PersistenceCapable
public class Name {...}

@PersistenceCapable
public class Address {...}

If we define the annotations like this

@PersistenceCapable
public class Account
{
    @Join
    Map<Name, Address> addresses;
}

or using XML metadata

<package name="com.mydomain">
    <class name="Account" identity-type="datastore">
        ...
        <field name="addresses" persistence-modifier="persistent">
            <map/>
            <join/>
        </field>
    </class>

    <class name="Address" identity-type="datastore">
        ...
    </class>

    <class name="Name" identity-type="datastore">
    </class>
</package>

 we don’t need to set the keyType or valueType since we are using generics.

This will create 4 tables in the datastore, one for Account, one for Address, one for Name and a
join table containing foreign keys to the key/value tables.

98



If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field>, something like this

<field name="addresses" persistence-modifier="persistent" table="ACCOUNT_ADDRESS">
    <map/>
    <join>
        <column name="ACCOUNT_ID"/>
    </join>
    <key>
        <column name="NAME_ID"/>
    </key>
    <value>
        <column name="ADDRESS_ID"/>
    </value>
</field>

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table attribute on the class
element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the field element.

• To specify the name of the join table, specify the table attribute on the field element.

• To specify the names of the columns of the join table, specify the column attribute on the join,
key, and value elements.

• To specify the foreign-key between container table and join table, specify <foreign-key> below
the <join> element.

• To specify the foreign-key between join table and key table, specify <foreign-key> below the
<key> element.

• To specify the foreign-key between join table and value table, specify <foreign-key> below the
<value> element.

Which changes the names of the join table to ACCOUNT_ADDRESS from ACCOUNT_ADDRESSES and
the names of the columns in the join table from ACCOUNT_ID_OID to ACCOUNT_ID, from
NAME_ID_KID to NAME_ID, and from ADDRESS_ID_VID to ADDRESS_ID.

99



Map<Simple,PC> using Join Table
Here our key is a simple type (in this case a String) and the values are persistable. Like this

public class Account
{
    Map<String, Address> addresses;

    ...
}

public class Address {...}

public class Account
{
    @Join
    Map<String, Address> addresses;
}

or using XML metadata

<package name="com.mydomain">
    <class name="Account" identity-type="datastore">
        ...
        <field name="addresses" persistence-modifier="persistent">
            <map/>
            <join/>
        </field>
    </class>

    <class name="Address" identity-type="datastore">
        ...
    </class>
</package>

This will create 3 tables in the datastore, one for Account, one for Address and a join table also
containing the key.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field> as shown above.

100



Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the column type of your
key is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column.

Map<PC,Simple> using Join Table
Here our value is a simple type (in this case a String) and the keys are persistable. Like this

public class Account
{
    Map<Address, String> addresses;

    ...
}

public class Address {...}

public class Account
{
    @Join
    Map<Address, String> addresses;
}

or using XML metadata

<package name="com.mydomain">
    <class name="Account" identity-type="datastore">
        ...
        <field name="addresses" persistence-modifier="persistent">
            <map/>
            <join/>
        </field>
    </class>

    <class name="Address" identity-type="datastore">
        ...
    </class>
</package>

This operates exactly the same as "Map<Simple, PC>" except that the additional table is for the key
instead of the value.

Map<Simple, Simple> using Join Table
Here our keys and values are of simple types (in this case a String). Like this

101



public class Account
{
    Map<String, String> addresses;

    ...
}

If you define the annotations for these classes as follows

@PersistenceCapable
public class Account
{
    @Join
    Map<String, String> addresses;

    ...
}

or using XML metadata

<package name="com.mydomain">
    <class name="Account" identity-type="datastore">
        ...
        <field name="addresses" persistence-modifier="persistent">
            <map key-type="java.lang.String" value-type="java.lang.String"/>
            <join/>
        </field>
    </class>
</package>

This results in just 2 tables. The "join" table contains both the key AND the value.

If you want to configure the names of the columns in the "join" table you would use the <key> and
<value> subelements of <field> as shown above.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the column type of your
key is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column.

102



Map<Simple, Simple> using AttributeConverter via
column
Just like in the above example, here we have a Map of simple keys/values. In this case we are
wanting to store this Map into a single column in the owning table. We do this by using a JDO
AttributeConverter.

public class Account
{
    ...

    @Persistent
    @Convert(MapStringStringToStringConverter.class)
    @Column(name="ADDRESSES")
    Map<String, String> addresses;
}

and then define our converter. You can clearly define your conversion process how you want it.
You could, for example, convert the Map into comma-separated strings, or could use JSON, or XML,
or some other format.

103



public class MapStringStringToStringConverter implements AttributeConverter<Map<
String, String>, String>
{
    public String convertToDatastore(Map<String, String> attribute)
    {
        if (attribute == null)
        {
            return null;
        }

        StringBuilder str = new StringBuilder();
        ... convert Map to String
        return str.toString();
    }

    public Map<String, String> convertToAttribute(String columnValue)
    {
        if (columnValue == null)
        {
            return null;
        }

        Map<String, String> map = new HashMap<String, String>();
        ... convert String to Map
        return map;
    }
}

Map<Simple,PC> Unidirectional FK (key stored in
value)
In this case we have an object with a Map of objects and we’re associating the objects using a
foreign-key in the table of the value. Here we use a field of the value as the key. The classes are like
this

public class Account
{
    Map<String, Address> addresses;
}

public class Address
{
    String alias; // Use as key
}

In this relationship, the Account class has a Map of Address objects, yet the Address knows
nothing about the Account. We define the annotations like this

104



public class Account
{
    ...
    @Key(mappedBy="alias")
    Map<String, Address> addresses;
}

<package name="com.mydomain">
    <class name="Account" identity-type="datastore">
        ...
        <field name="addresses" persistence-modifier="persistent">
            <map/>
            <key mapped-by="alias"/>
            <value column="ACCOUNT_ID_OID"/>
        </field>
    </class>

    <class name="Address" identity-type="datastore">
        ...
        <field name="alias" null-value="exception">
            <column name="KEY" length="20" jdbc-type="VARCHAR"/>
        </field>
    </class>
</package>

There will be 2 tables, one for Address, and one for Account. Note that we now have no "join"
annotation/element.

If you wish to specify the names of the columns used in the schema for the foreign key in the
Address table you should use the value element within the field of the map.

In terms of operation within your classes of assigning the objects in the relationship. You have to
take your Account object and add the Address to the Account map field since the Address knows
nothing about the Account. Also be aware that each Address object can have only one owner, since
it has a single foreign key to the Account. If you wish to have an Address assigned to multiple
Accounts then you should use the "Join Table" relationship above.

105



Map<Simple,PC> Unidirectional FK (key stored in
value)
In this case we have an object with a Map of objects and we’re associating the objects using a
foreign-key in the table of the value.

public class Account
{
    Map<String, Address> addresses;
}

public class Address
{
    String alias; // Use as key

    Account account;
}

The only difference to the variant above is the bidirectional link back to the Account from Address.

So we define our metadata in a similar way

<package name="com.mydomain">
    <class name="Account" identity-type="datastore">
        ...
        <field name="addresses" persistence-modifier="persistent" mapped-by="account">
            <map/>
            <key mapped-by="alias"/>
        </field>
    </class>

    <class name="Address" identity-type="datastore">
        ...
        <field name="account"/>
        <field name="alias" null-value="exception">
            <column name="KEY" length="20" jdbc-type="VARCHAR"/>
        </field>
    </class>
</package>

This will create 2 tables in the datastore. One for Account, and one for Address. The table for
Address will contain the key field as well as an index to the Account record (notated by the
mapped-by tag).

106



Map<PC,Simple> Unidirectional FK (value stored in
key)
In this case we have an object with a Map of objects and we’re associating the objects using a
foreign-key in the table of the key. We’re using a field (businessAddress) in the Address class as the
value of the map.

public class Account
{
    Map<Address, String> phoneNumbers;
}

public class Address
{
    String businessPhoneNumber; // Use as value
}

We define the MetaData like this

public class Account
{
   @Value(mappedBy="businessPhoneNumber")
   Map<Address, String> phoneNumbers;
}

107



<package name="com.mydomain">
    <class name="Account" identity-type="datastore">
        ...
        <field name="phoneNumbers">
            <map/>
            <key column="ACCOUNT_ID_OID"/>
            <value mapped-by="businessPhoneNumber"/>
        </field>
    </class>

    <class name="Address" identity-type="datastore">
        ...
        <field name="businessPhoneNumber" null-value="exception">
            <column name="BUS_PHONE" length="20" jdbc-type="VARCHAR"/>
        </field>
    </class>
</package>

There will be 2 tables, one for Address, and one for Account. The key thing here is that we have
specified a "mapped-by" on the "value" element.

If you wish to specify the names of the columns used in the schema for the foreign key in the
Address table you should use the key element within the field of the map.

In terms of operation within your classes of assigning the objects in the relationship. You have to
take your Account object and add the Address to the Account map field since the Address knows
nothing about the Account. Also be aware that each Address object can have only one owner, since
it has a single foreign key to the Account. If you wish to have an Address assigned to multiple
Accounts then you should use the "Join Table" relationship above.

108



N-1 Relations
You have a N-to-1 relationship when an object of a class has an associated object of another class
(only one associated object) and several of this type of object can be linked to the same associated
object. From the other end of the relationship it is effectively a 1-N, but from the point of view of
the object in question, it is N-1. You can create the relationship in 2 ways depending on whether the
2 classes know about each other (bidirectional), or whether only the "N" side knows about the other
class (unidirectional). These are described below.


For RDBMS a N-1 relation is stored as a foreign-key column(s). For non-RDBMS it
is stored as a String "column" storing the 'id' (possibly with the class-name
included in the string) of the related object.

Unidirectional with ForeignKey
For this case you could have 2 classes, User and Account, as below.

public class Account
{
    User user;

    ...
}

public class User
{
    ...
}

so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa. A particular
user could be related to several accounts. If you define the annotations for these classes as follows

public class Account
{
    ...

    @Column(name="USER_ID")
    User user;
}

public class User
{
    ...
}

or using XML metadata

109



<package name="mydomain">
    <class name="User" table="USER">
        <field name="id" primary-key="true">
            <column name="USER_ID"/>
        </field>
        ...
    </class>

    <class name="Account" table="ACCOUNT">
        <field name="id" primary-key="true">
            <column name="ACCOUNT_ID"/>
        </field>
        ...
        <field name="user">
            <column name="USER_ID"/>
        </field>
    </class>
</package>

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT and a column USER_ID), as shown below.

This is exactly the same as a 1-1 Unidirectional relation.

Unidirectional with JoinTable
For this case we have the same 2 classes, User and Account, as before.

public class Account
{
    User user;

    ...
}

public class User
{
    ...
}

so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa and the
relation is stored using a join table. A particular user could be related to several accounts. If you

110

mapping.html#one_one_uni


define the annotations as follows

public class Account
{
    ...

    @Persistent(table="ACCOUNT_USER")
    @Join
    User user;
}

or with XML metadata

<package name="mydomain">
    <class name="User" identity-type="datastore">
        ...
    </class>

    <class name="Account" identity-type="datastore">
        ...
        <field name="user" table="ACCOUNT_USER">
            <join/>
        </field>
    </class>
</package>

For RDBMS this will create 3 tables in the database, one for User (with name USER), one for
Account (with name ACCOUNT), and a join table (with name ACCOUNT_USER) as shown below.

Note that in the case of non-RDBMS datastores there is no join-table, simply a "column" in the
ACCOUNT "table", storing the "id" of the related object

If you wish to specify the names of the database tables and columns for these classes, you can use
the attribute table (on the class element), the attribute name (on the column element) and the
attribute name (on the column attribute under join

Bidirectional
This relationship is described in the guide for 1-N relationships. In particular there are 2 ways to
define the relationship for RDBMS : the first uses a Join Table to hold the relationship, whilst the
second uses a Foreign Key in the "N" object to hold the relationship. For non-RDBMS datastores each
side will have a "column" (or equivalent) in the "table" of the N side storing the "id" of the related

111

mapping.html#one_to_many_collection
mapping.html#one_many_join_bi
mapping.html#one_many_fk_bi


(owning) object. Please refer to the 1-N relationships bidirectional relations since they show this
exact relationship.

112



M-N Relations
You have a M-to-N (or Many-to-Many) relationship if an object of a class A has associated objects of
class B, and class B has associated objects of class A. This relationship may be achieved through
Java Set, Map, List or subclasses of these, although the only one that supports a true M-N is for a
Set/Collection.

With DataNucleus this can be set up as described in this section, using what is called a Join Table
relationship. Let’s take the following example and describe how to model it with the different types
of collection classes. We have 2 classes, Product and Supplier as below.

public class Product
{
    Set<Supplier> suppliers;

    ...
}

public class Supplier
{
    Set<Product> products;

    ...
}

Here the Product class knows about the Supplier class. In addition the Supplier knows about the
Product class, however with these relationships are really independent.



Please note that RDBMS supports the full range of options on this page, whereas
other datastores (ODF, Excel, HBase, MongoDB, etc) persist the Collection in a
column in the owner object (as well as a column in the non-owner object when
bidirectional) rather than using join-tables or foreign-keys since those concepts
are RDBMS-only.


When adding objects to an M-N relation, you MUST add to the owner side as a
minimum, and optionally also add to the non-owner side. Just adding to the non-
owner side will not add the relation.


If you want to delete an object from one end of a M-N relationship you will have
to remove it first from the other objects relationship. If you don’t you will get an
error message that the object to be deleted has links to other objects and so
cannot be deleted.

The various possible relationships are described below.

• M-N Set relation

113

#many_many_set


•

M-N Ordered List relation

• M-N Indexed List - modelled as 2 1-N Unidirectional relations using Join Table

• M-N Map - modelled as 2 1-N Unidirectional using Join Table

equals() and hashCode()
Important : The element of a Collection ought to define the methods equals() and hashCode()
so that updates are detected correctly. This is because any Java Collection will use these to
determine equality and whether an element is contained in the Collection. Note also that the
hashCode() should be consistent throughout the lifetime of a persistable object. By that we mean
that it should not use some basis before persistence and then use some other basis (such as the
object identity) after persistence, for this reason we do not recommend usage of
JDOHelper.getObjectId(obj) in the equals()/hashCode() methods.

Using Set
If you define the Meta-Data for these classes as follows

public class Product
{
    ...

    @Persistent(table="PRODUCTS_SUPPLIERS")
    @Join(column="PRODUCT_ID")
    @Element(column="SUPPLIER_ID")
    Set<Supplier> suppliers;
}

public class Supplier
{
    ...

    @Persistent(mappedBy="suppliers")
    Set<Products> products;
}

or using XML metadata

114

#many_many_list_ordered
#many_many_list_indexed
#many_many_map


<package name="mydomain">
    <class name="Product" identity-type="datastore">
        ...
        <field name="suppliers" table="PRODUCTS_SUPPLIERS">
            <collection element-type="mydomain.Supplier"/>
            <join>
                <column name="PRODUCT_ID"/>
            </join>
            <element>
                <column name="SUPPLIER_ID"/>
            </element>
        </field>
    </class>

    <class name="Supplier" identity-type="datastore">
        ...
        <field name="products" mapped-by="suppliers">
            <collection element-type="mydomain.Product"/>
        </field>
    </class>
</package>

Note how we have specified the information only once regarding join table name, and join column
names as well as the <join>. This is the JDO standard way of specification, and results in a single
join table.

Using Ordered Lists
In this case our fields are of type List instead of Set used above. If you define the annotations for
these classes as follows

115



public class Product
{
    ...

    @Persistent(table="PRODUCTS_SUPPLIERS")
    @Join(column="PRODUCT_ID")
    @Element(column="SUPPLIER_ID")
    @Order(extensions=@Extension(vendorName="datanucleus", key="list-ordering", value
="id ASC"))
    List<Supplier> suppliers
}

public class Supplier
{
    ...

    @Persistent
    @Order(extensions=@Extension(vendorName="datanucleus", key="list-ordering", value
="id ASC"))
    List<Product> products
}

or using XML metadata

116



<package name="mydomain">
    <class name="Product" identity-type="datastore">
        ...

        <field name="suppliers">
            <collection element-type="mydomain.Supplier"/>
            <order>
                <extension vendor-name="datanucleus" key="list-ordering" value="id
ASC"/>
            </order>
            <join/>
        </field>
    </class>

    <class name="Supplier" identity-type="datastore">
        ...

        <field name="products">
            <collection element-type="mydomain.Product"/>
            <order>
                <extension vendor-name="datanucleus" key="list-ordering" value="id
ASC"/>
            </order>
            <join/>
        </field>
    </class>
</package>

There will be 3 tables, one for Product, one for Supplier, and the join table. The difference from
the Set example is that we now have ordered list specification at both sides of the relation. This has
no effect in the datastore schema but when the Lists are retrieved they are ordered using the
specified ordering.

Using indexed Lists
Firstly a true M-N relation with Lists is impossible since there are two lists, and it is
undefined as to which one applies to which side etc. What is shown below is two independent
1-N unidirectional join table relations.

If you define the Meta-Data for these classes as follows

117



public class Product
{
    ...

    @Join
    List<Supplier> suppliers;
}

public class Supplier
{
    ...

    @Join
    List<Products> products;
}

or using XML metadata

<package name="mydomain">
    <class name="Product" identity-type="datastore">
        ...
        <field name="suppliers" persistence-modifier="persistent">
            <collection element-type="mydomain.Supplier"/>
            <join/>
        </field>
    </class>

    <class name="Supplier" identity-type="datastore">
        ...
        <field name="products" persistence-modifier="persistent">
            <collection element-type="mydomain.Product"/>
            <join/>
        </field>
    </class>
</package>

There will be 4 tables, one for Product, one for Supplier, and the join tables. The difference from
the Set example is in the contents of the join tables. An index column is added to keep track of the
position of objects in the Lists.

118



In the case of a (indexed) List at both ends it doesn’t make sense to use a single join table because
the ordering can only be defined at one side, so you have to have 2 join tables.

Using Map
If you define the Meta-Data for these classes as follows

<package name="mydomain">
    <class name="Product" identity-type="datastore">
        ...
        <field name="suppliers" persistence-modifier="persistent">
            <map key-type="java.lang.String" value-type="mydomain.Supplier"/>
            <join/>
        </field>
    </class>

    <class name="Supplier" identity-type="datastore">
        ...
        <field name="products" persistence-modifier="persistent">
            <map key-type="java.lang.String" value-type="mydomain.Product"/>
            <join/>
        </field>
    </class>
</package>

This will create 4 tables in the datastore, one for Product, one for Supplier, and the join tables
which also contains the keys to the Maps (a String).

119



Arrays
JDO allows implementations to optionally support the persistence of arrays. DataNucleus provides
full support for arrays in similar ways that collections are supported. DataNucleus supports
persisting arrays as

• Single Column - the array is byte-streamed into a single column in the table of the containing
object.

• Serialised - the array is serialised into single column in the table of the containing object.

• Using a Join Table - where the array relation is persisted into the join table, with foreign-key
links to an element table where the elements of the array are persistable

• Using a Foreign-Key in the element - only available where the array is of a persistable type

• Simple array stored in JoinTable - the array is stored in a "join" table, with a column in that table
storing each element of the array


JDO has no simple way of detecting changes to an arrays contents. To update an
array you must EITHER replace the array field with the new array value OR
update the array element and then call JDOHelper.makeDirty(obj, "fieldName");

Single Column Arrays
Let’s suppose you have a class something like this

public class Account
{
    byte[] permissions;

    ...
}

So we have an Account and it has a number of permissions, each expressed as a byte. We want to
persist the permissions in a single-column into the table of the account (but we don’t want them
serialised).

In terms of metadata required we simply define the field as "persistent". You could add <array> to
be explicit but the type of the field is an array, and the type declaration also defines the component
type so nothing more is needed. This results in a datastore schema as follows

DataNucleus supports persistence of the following array types in this way : boolean[], byte[], char[],

120

#array_singlecolumn
#array_serialised
#array_join
#array_fk
#array_join_nonpc


double[], float[], int[], long[], short[], Boolean[], Byte[], Character[], Double[], Float[], Integer[], Long[],
Short[], BigDecimal[], BigInteger[]

See also :-

• MetaData reference for <array> element

• Annotations reference for @Element

Serialised Arrays
Let’s suppose you have a class something like the previous example

public class Account
{
    byte[] permissions;

    ...
}

and now we want to persist the permissions as serialised into the table of the account. We define
metadata like this

public class Account
{
    @Serialized
    byte[] permissions;
    ...
}

or using XML metadata

<class name="Account" identity-type="datastore">
    ...
    <field name="permissions" serialized="true" column="PERMISSIONS"/>
</class>

That is, you define the field as serialized. To define arrays of short, long, int, or indeed any other
supported array type you would do the same as above. This results in a datastore schema as follows

DataNucleus supports persistence of many array types in this way, including :_ boolean[], byte[],

121

metadata_xml.html#array
annotations.html#Element


char[], double[], float[], int[], long[], short[], Boolean[], Byte[], Character[], Double[], Float[],
Integer[], Long[], Short[], BigDecimal[], BigInteger[], String[], java.util.Date[], java.util.Locale[]_

See also :-

• MetaData reference for <field> element

• MetaData reference for <array> element

• Annotations reference for @Persistent

• Annotations reference for @Element

• Annotations reference for @Serialized

Arrays persisted into Join Tables
DataNucleus will support arrays persisted into a join table. Let’s take the example above and make
the "permission" a class in its own right, so we have

public class Account
{
    ...

    Permission[] permissions;
}

public class Permission
{
    ...
}

So an Account has an array of *Permission*s, and both of these objects are entities. We want to
persist the relationship using a join table. We define the MetaData as follows

public class Account
{
    ...

    @Join(column="ACCOUNT_ID")
    @Element(column="PERMISSION_ID")
    @Order(column="PERMISSION_ORDER_IDX")
    Permission[] permissions;
}

or using XML metadata

122

metadata_xml.html#field
metadata_xml.html#array
annotations.html#Persistent
annotations.html#Element
annotations.html#Serialized


<class name="Account" table="ACCOUNT">
    <field name="permissions" table="ACCOUNT_PERMISSIONS">
        <array/>
        <join column="ACCOUNT_ID"/>
        <element column="PERMISSION_ID"/>
        <order column="PERMISSION_ORDER_IDX"/>
    </field>
</class>
<class name="Permission" table="PERMISSION">
    <field name="name"/>
</class>

This results in a datastore schema as follows

See also :-

• MetaData reference for <array> element

• MetaData reference for <element> element

• MetaData reference for <join> element

• MetaData reference for <order> element

• Annotations reference for @Element

• Annotations reference for @Order

Arrays persisted using Foreign-Keys
DataNucleus will support arrays persisted via a foreign-key in the element table. This is only
applicable when the array is of a persistable type. Let’s take the same example above. So we have

public class Account
{
    ...

    Permission[] permissions;
}

public class Permission
{
    ...
}

123

metadata_xml.html#array
metadata_xml.html#element
metadata_xml.html#join
metadata_xml.html#order
annotations.html#Element
annotations.html#Order


and the metadata is

public class Account
{
    ...

    @Element(column="ACCOUNT_ID")
    @Order(column="ACCOUNT_PERMISSION_ORDER_IDX")
    Permission[] permissions;
}

or using XML metadata

<class name="Account" table="ACCOUNT">
    ...
    <field name="permissions">
        <array/>
        <element column="ACCOUNT_ID"/>
        <order column="ACCOUNT_PERMISSION_ORDER_IDX"/>
    </field>
</class>
<class name="Permission" table="PERMISSION">
    <field name="name"/>
</class>

This results in a datastore schema as follows

See also :-

• MetaData reference for <array> element

• MetaData reference for <element> element

• MetaData reference for <order> element

• Annotations reference for @Element

• Annotations reference for @Order

Simple array stored in join table
If you want an array of non-entity objects be stored in a "join" table, you can follow this example.
We have an Account that stores a Collection of addresses. These addresses are simply Strings. We
define the annotations like this

124

metadata_xml.html#array
metadata_xml.html#element
metadata_xml.html#order
annotations.html#Element
annotations.html#Order


public class Account
{
    ...

    @Join(table="ACCOUNT_ADDRESSES")
    String[] addresses;
}

or using XML metadata

<class name="Account" table="ACCOUNT">
    ...
    <field name="permissions">
        <array/>
        <join table="ACCOUNT_ADDRESSES"/>
        <element column="ACCOUNT_ID"/>
        <order column="ACCOUNT_PERMISSION_ORDER_IDX"/>
    </field>
</class>

In the datastore the following is created

Use @Column on the field/method to define the column details of the element in the join table.

125



Interfaces
JDO requires that implementations support the persistence of interfaces as first class objects
(FCO’s). DataNucleus provides this capability. It follows the same general process as for
java.lang.Object since both interfaces and java.lang.Object are basically references to some
persistable object.

To demonstrate interface handling let’s introduce some classes. Let’s suppose you have an interface
with a selection of classes implementing the interface something like this

public interface Shape
{
    double getArea();
}

public class Circle implements Shape
{
    double radius;
    ...
}

public class Square implements Shape
{
    double length;
    ...
}

public Rectange implements Shape
{
    double width;
    double length;
    ...
}

You then have a class that contains an object of this interface type

public class ShapeHolder
{
    protected Shape shape=null;
    ...
}

JDO doesn’t define how an interface is persisted in the datastore. Obviously there can be many
implementations and so no obvious solution. DataNucleus allows the following

• per-implementation : a FK is created for each implementation so that the datastore can
provide referential integrity. The other advantage is that since there are FKs then querying can

126

mapping.html#objects


be performed. The disadvantage is that if there are many implementations then the table can
become large with many columns not used

• identity : a single column is added and this stores the class name of the implementation stored,
as well as the identity of the object. The advantage is that if you have large numbers of
implementations then this can cope with no schema change. The disadvantages are that no
querying can be performed, and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is per-implementation.

In terms of the implementations of the interface, you can either leave the field to accept any known
about implementation, or you can restrict it to only accept some implementations (see
implementation-classes metadata extension). If you are leaving it to accept any persistable
implementation class, then you need to be careful that such implementations are known to
DataNucleus at the point of encountering the interface field. By this we mean, DataNucleus has to
have encountered the metadata for the implementation so that it can allow for the implementation
when handling the field. You can force DataNucleus to know about a persistable class by using an
autostart mechanism, or using persistence.xml, or by placement of the package.jdo file so that when
the owning class for the interface field is encountered so is the metadata for the implementations.

1-1 Interface Relation
To allow persistence of this interface field with DataNucleus you have 2 levels of control. The first
level is global control. Since all of our Square, Circle, Rectangle classes implement Shape then we
just define them in the MetaData as we would normally.

@Entity
public class Square implement Shape
{
    ...
}
@Entity
public class Circle implement Shape
{
    ...
}
@Entity
public class Rectangle implement Shape
{
    ...
}

The global way means that when mapping that field DataNucleus will look at all persistable classes
it knows about that implement the specified interface.

127



JDO also allows users to specify a list of classes implementing the interface on a field-by-field basis,
defining which of these implementations are accepted for a particular interface field. To do this you
define the Meta-Data like this

@Entity
public class ShapeHolder
{
    @Extension(key="implementation-classes", value
="mydomain.Circle,mydomain.Rectangle,mydomain.Square")
    @Extension(key="mapping-strategy", value="identity")
    Shape shape;

    ...
}

or using XML metadata

<package name="mydomain">
    <class name="ShapeHolder">
        <field name="shape" persistence-modifier="persistent"
               field-type="mydomain.Circle,mydomain.Rectangle,mydomain.Square"/>
</class>

That is, for any interface object in a class to be persisted, you define the possible implementation
classes that can be stored there. DataNucleus interprets this information and will map the above
example classes to the following in the database

So DataNucleus adds foreign keys from the containers table to all of the possible implementation
tables for the shape field.

If we use mapping-strategy of identity then we get a different datastore schema.

128



<class name="ShapeHolder">
    <field name="shape" persistence-modifier="persistent">
        <extension vendor-name="datanucleus" key="mapping-strategy" value="identity"/>
    </field>
</class>

and the datastore schema becomes

and the column "SHAPE" will contain strings such as mydomain.Circle:1 allowing retrieval of the
related implementation object.

1-N Interface Relation
You can have a Collection/Map containing elements of an interface type. You specify this in the
same way as you would any Collection/Map. You can have a Collection of interfaces as long as
you use a join table relation and it is unidirectional. The "unidirectional" restriction is that the
interface is not persistent on its own and so cannot store the reference back to the owner object.
Use the 1-N relationship guides for the metadata definition to use.

You need to use a DataNucleus extension tag "implementation-classes" if you want to restrict the
collection to only contain particular implementations of an interface. For example

public class ShapeHolder
{
    @Join
    @Extension(key="implementation-classes", value
="mydomain.Circle,mydomain.Rectangle,mydomain.Square")
    @Extension(key="mapping-strategy", value="identity")
    Collection<Shape> shapes;

    ...
}

129



<class name="ShapeHolder">
    <field name="shapes" persistence-modifier="persistent">
        <collection element-type="mydomain.Shape"/>
        <join/>
        <extension vendor-name="datanucleus" key="implementation-classes"
 
value="mydomain.Circle,mydomain.Rectangle,mydomain.Square,mydomain.Triangle"/>
    </field>
</class>

So the shapes field is a Collection of mydomain.Shape and it will accept the implementations of type
Circle, Rectangle, Square and Triangle. If you omit the implementation-classes tag then you have
to give DataNucleus a way of finding the metadata for the implementations prior to encountering
this field.

Dynamic Schema Updates
The default mapping strategy for interface fields and collections of interfaces is to have separate FK
column(s) for each possible implementation of the interface. Obviously if you have an application
where new implementations are added over time the schema will need new FK column(s) adding to
match. This is possible if you enable the persistence property
datanucleus.rdbms.dynamicSchemaUpdates, setting it to true. With this set, any insert/update
operation of an interface related field will do a check if the implementation being stored is known
about in the schema and, if not, will update the schema accordingly.

130



java.lang.Object
JDO requires that implementations support the persistence of java.lang.Object as first class objects
(FCO’s). DataNucleus provides this capability and also provides that java.lang.Object can be stored
as serialised. It follows the same general process as for Interfaces since both interfaces and
java.lang.Object are basically references to some persistable object.


java.lang.Object cannot be used to persist non-persistable types with fixed
schema datastore (e.g RDBMS). Think of how you would expect it to be stored if
you think it ought to

JDO doesn’t define how an object FCO is persisted in the datastore. Obviously there can be many
"implementations" and so no obvious solution. DataNucleus allows the following ways of persisting
Object fields :-

• per-implementation : a FK is created for each "implementation" so that the datastore can
provide referential integrity. The other advantage is that since there are FKs then querying can
be performed. The disadvantage is that if there are many implementations then the table can
become large with many columns not used

• identity : a single column is added and this stores the class name of the "implementation"
stored, as well as the identity of the object. The disadvantages are that no querying can be
performed, and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is per-implementation.

1-1/N-1 Object Relation
Let’s suppose you have a field in a class and you have a selection of possible persistable class that
could be stored there, so you decide to make the field a java.lang.Object. So let’s take an example.
We have the following class

public class ParkingSpace
{
    String location;
    Object occupier;
}

So we have a space in a car park, and in that space we have an occupier of the space. We have some
legacy data and so can’t make the type of this "occupier" an interface type, so we just use
java.lang.Object. Now we know that we can only have particular types of objects stored there (since
there are only a few types of vehicle that can enter the car park). So we define our MetaData like
this

131

mapping.html#interfaces


@Persistent(types={mydomain.samples.vehicles.Car.class, mydomain.samples.vehicles
.Motorbike.class})
Object occupier;

or using XML metadata

<package name="mydomain.samples.object">
    <class name="ParkingSpace">
        <field name="location"/>
        <field name="occupier" persistence-modifier="persistent"
               field-type="mydomain.samples.vehicles.Car,
mydomain.samples.vehicles.Motorbike"/>
        </field>
</class>

This will result in the following database schema.

So DataNucleus adds foreign keys from the ParkingSpace table to all of the possible implementation
tables for the occupier field.

In conclusion, when using per-implementation mapping for any java.lang.Object field in a class to be
persisted (as non-serialised), you must define the possible "implementation" classes that can be
stored there.

If we use mapping-strategy of identity then we get a different datastore schema.

<class name="ParkingSpace">
    <field name="location"/>
    <field name="occupier" persistence-modifier="persistent">
        <extension vendor-name="datanucleus" key="mapping-strategy" value="identity"/>
    </field>
</class>

and the datastore schema becomes

132



and the column "OCCUPIER" will contain strings such as com.mydomain.samples.object.Car:1
allowing retrieval of the related implementation object.

1-N Object Relation
You can have a Collection/Map containing elements of java.lang.Object. You specify this in the same
way as you would any Collection/Map. DataNucleus supports having a Collection of references with
multiple implementation types as long as you use a join table relation.

Serialised Objects
By default a field of type java.lang.Object is stored as an instance of the underlying entity in the
table of that object. If either your Object field represents non-entities or you simply wish to serialise
the Object into the same table as the owning object, you need to specify it as serialized, like this

public class MyClass
{
    ...
    @Serialized
    Object myObject;
}

<class name="MyClass">
    ...
    <field name="myObject" serialized="true"/>
</class>

Similarly, where you have a collection of Objects using a join table, the objects are, by default,
stored in the table of the persistable instance. If instead you want them to occupy a single BLOB
column of the join table, you should specify the "embedded-element" attribute of <collection> like
this

133



<class name="MyClass">
    <field name="myCollection">
        <collection element-type="java.lang.Object" serialized-element="true"/>
        <join/>
    </field>
</class>

Please refer to the serialised fields guide for more details of storing objects in this way.

134

mapping.html#serialised


Embedded Fields
The JDO persistence strategy typically involves persisting the fields of any class into its own table,
and representing any relationships from the fields of that class across to other tables. There are
occasions when this is undesirable, maybe due to an existing datastore schema, or because a more
convenient datastore model is required. JDO allows the persistence of fields as embedded typically
into the same table as the "owning" class.

One important decision when defining objects of a type to be embedded into another type is
whether objects of that type will ever be persisted in their own right into their own table, and have
an identity. JDO provides a MetaData attribute that you can use to signal this.

@PersistenceCapable(embeddedOnly="true")
public class MyClass
{
    ...
}

or using XML metadata

<jdo>
    <package name="com.mydomain.samples.embedded">
        <class name="MyClass" embedded-only="true">
            ...
        </class>
    </package>
</jdo>

With the above MetaData (using the embedded-only attribute), in our application any objects of the
class MyClass cannot be persisted in their own right. They can only be embedded into other
objects.

JDO’s definition of embedding encompasses several types of fields. These are described below

• Embedded PCs - where you have a 1-1 relationship and you want to embed the other persistable
into the same table as the your object

• Embedded Nested PCs - like the first example except that the other object also has another
persistable that also should be embedded

• Embedded Collection elements - where you want to embed the elements of a collection into a
join table (instead of persisting them into their own table)

• Embedded Map keys/values - where you want to embed the keys/values of a map into a join
table (instead of persisting them into their own table)

With respect to what types of fields you can have in an embedded class, DataNucleus supports all
basic types, as well as 1-1/N-1 relations (where the foreign-key is at the embedded object side) and
some 1-N/M-N relations.

135

#embedded_pc
#embedded_pc_nested
#embedded_collection
#embedded_map



whilst nested embedded members are supported, you cannot use recursive
embedded objects since that would require potentially infinite columns in the
owner table, or infinite embedded join tables.

Embedding persistable objects (1-1)


Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra,
JSON

In a typical 1-1 relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and a foreign key is managed between them. With JDO and DataNucleus you can persist
the related persistable object as embedded into the same table. This results in a single table in the
datastore rather than one for each of the 2 classes.

Let’s take an example. We are modelling a Computer, and in our simple model our Computer has a
graphics card and a sound card. So we model these cards using a ComputerCard class. So our
classes become

136



public class Computer
{
    private String operatingSystem;

    private ComputerCard graphicsCard;

    private ComputerCard soundCard;

    public Computer(String osName, ComputerCard graphics, ComputerCard sound)
    {
        this.operatingSystem = osName;
        this.graphicsCard = graphics;
        this.soundCard = sound;
    }

    ...
}

public class ComputerCard
{
    public static final int ISA_CARD = 0;
    public static final int PCI_CARD = 1;
    public static final int AGP_CARD = 2;

    private String manufacturer;

    private int type;

    public ComputerCard(String manufacturer, int type)
    {
        this.manufacturer = manufacturer;
        this.type = type;
    }

    ...
}

The traditional (default) way of persisting these classes would be to have a table to represent each
class. So our datastore will look like this

However we decide that we want to persist Computer objects into a table called COMPUTER and
we also want to persist the PC cards into the same table. We define our MetaData like this

137



public class Computer
{
    @Embedded(nullIndicatorColumn="GRAPHICS_MANUFACTURER", members={
        @Persistent(name="manufacturer", column="GRAPHICS_MANUFACTURER"),
        @Persistent(name="type", column="GRAPHICS_TYPE")})
    private ComputerCard graphicsCard;

    @Embedded(nullIndicatorColumn="SOUND_MANUFACTURER", members={
        @Persistent(name="manufacturer", column="SOUND_MANUFACTURER"),
        @Persistent(name="type", column="SOUND_TYPE")})
    private ComputerCard soundCard;

    ...
}

@PersistenceCapable(embeddedOnly="true")
public class ComputerCard
{
    ...
}

or using XML metadata

<jdo>
    <package name="com.mydomain.samples.embedded">
        <class name="Computer" identity-type="datastore" table="COMPUTER">
            ...
            <field name="graphicsCard" persistence-modifier="persistent">
                <embedded null-indicator-column="GRAPHICS_MANUFACTURER">
                    <field name="manufacturer" column="GRAPHICS_MANUFACTURER"/>
                    <field name="type" column="GRAPHICS_TYPE"/>
                </embedded>
            </field>
            <field name="soundCard" persistence-modifier="persistent">
                <embedded null-indicator-column="SOUND_MANUFACTURER">
                    <field name="manufacturer" column="SOUND_MANUFACTURER"/>
                    <field name="type" column="SOUND_TYPE"/>
                </embedded>
            </field>
        </class>

        <class name="ComputerCard" embedded-only="true">
            ...
        </class>
    </package>
</jdo>

So here we will end up with a TABLE called "COMPUTER" with columns "COMPUTER_ID",

138



"OS_NAME", "GRAPHICS_MANUFACTURER", "GRAPHICS_TYPE", "SOUND_MANUFACTURER",
"SOUND_TYPE". If we call makePersistent() on any objects of type Computer, they will be persisted
into this table.

You will notice in the MetaData our use of the attribute null-indicator-column. This is used when
retrieving objects from the datastore and detecting if it is a NULL embedded object. In the case we
have here, if the column GRAPHICS_MANUFACTURER is null at retrieval, then the embedded
"graphicsCard" field will be set as null. Similarly for the "soundCard" field when
SOUND_MANUFACTURER is null.

If the ComputerCard class above has a reference back to the related Computer, JDO defines a
mechanism whereby this will be populated. You would add the XML element owner-field to the
<embedded> tag defining the field within ComputerCard that represents the Computer it relates
to. When this is specified DataNucleus will populate it automatically, so that when you retrieve the
Computer and access the ComputerCard objects within it, they will have the link in place.

It should be noted that in this latter (embedded) case we can still persist objects of type
ComputerCard into their own table - the MetaData definition for ComputerCard is used for the
table definition in this case.

Please note that if, instead of specifying the <embedded> block we had specified embedded in the
field element we would have ended up with the same thing, just that the fields and columns would
have been mapped using their default mappings, and that the <embedded> provides control over
how they are mapped.


by default the embedded objects cannot have inheritance. Inheritance in
embedded objects is only support for RDBMS and MongoDB, and involves
defining a discriminator in the metadata of the embedded type.

See also :-

• MetaData reference for <embedded> element

• Annotations reference for @Embedded

Embedding Nested persistable objects


Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra,
JSON

In the above example we had an embedded persistable object within a persisted object. What if our
embedded persistable object also contain another persistable object. So, using the above example

139

metadata_xml.html#embedded
annotations.html#Embedded


what if ComputerCard contains an object of type Connector ?

@PersistenceCapable(embeddedOnly="true")
public class ComputerCard
{
    Connector connector;

    public ComputerCard(String manufacturer, int type, Connector conn)
    {
        this.manufacturer = manufacturer;
        this.type = type;
        this.connector = conn;
    }

    ...
}

@PersistenceCapable(embeddedOnly="true")
public class Connector
{
    int type;
}

Well we want to store all of these objects into the same record in the COMPUTER table, so we define
our XML metadata like this

140



<jdo>
    <package name="com.mydomain.samples.embedded">
        <class name="Computer" identity-type="datastore" table="COMPUTER">
            ....
            <field name="graphicsCard" persistence-modifier="persistent">
                <embedded null-indicator-column="GRAPHICS_MANUFACTURER">
                    <field name="manufacturer" column="GRAPHICS_MANUFACTURER"/>
                    <field name="type" column="GRAPHICS_TYPE"/>
                    <field name="connector">
                        <embedded>
                            <field name="type" column="GRAPHICS_CONNECTOR_TYPE"/>
                        </embedded>
                    </field>
                </embedded>
            </field>
            <field name="soundCard" persistence-modifier="persistent">
                <embedded null-indicator-column="SOUND_MANUFACTURER">
                    <field name="manufacturer" column="SOUND_MANUFACTURER"/>
                    <field name="type" column="SOUND_TYPE"/>
                    <field name="connector">
                        <embedded>
                            <field name="type" column="SOUND_CONNECTOR_TYPE"/>
                        </embedded>
                    </field>
                </embedded>
            </field>
        </class>

        <class name="ComputerCard" table="COMPUTER_CARD">
            ....
        </class>

        <class name="Connector" embedded-only="true">
            <field name="type"/>
        </class>
    </package>
</jdo>

So we simply nest the embedded definition of the Connector objects within the embedded
definition of the ComputerCard definitions for Computer. JDO supports this to as many levels as
you require! The Connector objects will be persisted into the GRAPHICS_CONNECTOR_TYPE, and
SOUND_CONNECTOR_TYPE columns in the COMPUTER table.

141




you cannot specify nested embedded column information using JDO annotations;
use XML metadata instead.

Embedding Collection Elements

 Applicable to RDBMS, MongoDB

In a typical 1-N relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and either a join table or a foreign key is used to relate them. With JPA and DataNucleus
you have a variation on the join table relation where you can persist the objects of the "N" side into
the join table itself so that they don’t have their own identity, and aren’t stored in the table for that
class. This is supported in DataNucleus with the following provisos

• You can have inheritance in embedded keys/values and a discriminator is added (you must
define the discriminator in the metadata of the embedded type).

• When retrieving embedded elements, all fields are retrieved in one call. That is, fetch plans are
not utilised. This is because the embedded element has no identity so we have to retrieve all
initially.

It should be noted that where the collection "element" is not an entity or of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to embeddable
entity elements only. DataNucleus doesn’t support the embedding of "reference type" objects
currently.

Let’s take an example. We are modelling a Network, and in our simple model our Network has
collection of *Device*s. So we define our classes as

142



public class Network
{
    private String name;
    private Collection<Device> devices = new HashSet<>();

    ...
}

public class Device
{
    private String name;
    private String ipAddress;

    ...
}

We decide that instead of Device having its own table, we want to persist them into the join table of
its relationship with the Network since they are only used by the network itself. We define our
XML MetaData like this

public class Network
{
    @Element(embeddedMapping={
        @Embedded(members={
            @Persistent(name="name", column="DEVICE_NAME"),
            @Persistent(name="ipAddress", column="DEVICE_IP_ADDR")})
    })
    private Collection<Device> devices = new HashSet<>();

    ...
}

@PersistenceCapable(embeddedOnly="true")
public class Device
{
    private String name;
    private String ipAddress;

    ...
}

or using XML metadata

143



<jdo>
    <package name="com.mydomain.samples.embedded">
        <class name="Network" identity-type="datastore" table="NETWORK">
            ...
            <field name="devices" persistence-modifier="persistent"
table="NETWORK_DEVICES">
                <collection element-type="com.mydomain.samples.embedded.Device"/>
                <join>
                    <column name="NETWORK_ID"/>
                </join>
                <element>
                    <embedded>
                        <field name="name">
                            <column name="DEVICE_NAME" allows-null="true"/>
                        </field>
                        <field name="ipAddress">
                            <column name="DEVICE_IP_ADDR" allows-null="true"/>
                        </field>
                    </embedded>
                </element>
            </field>
        </class>

        <class name="Device" table="DEVICE" embedded-only="true">
            <field name="name">
                <column name="NAME"/>
            </field>
            <field name="ipAddress">
                <column name="IP_ADDRESS"/>
            </field>
        </class>
    </package>
</jdo>

So here we will end up with a table called "NETWORK" with columns "NETWORK_ID", and "NAME",
and a table called "NETWORK_DEVICES" with columns "NETWORK_ID", "ADPT_PK_IDX",
"DEVICE_NAME", "DEVICE_IP_ADDR". When we persist a Network object, any devices are persisted
into the NETWORK_DEVICES table.

Please note that if, instead of specifying the <embedded> block we had specified embedded-
element in the collection element we would have ended up with the same thing, just that the fields
and columns would be mapped using their default mappings, and that the <embedded> provides
control over how they are mapped.

144



You note that in our example above DataNucleus has added an extra column "ADPT_PK_IDX" to
provide the primary key of the join table now that we’re storing the elements as embedded. A
variation on this would have been if we wanted to maybe use the "DEVICE_IP_ADDR" as the other
part of the primary key, in which case the "ADPT_PK_IDX" would not be needed. You would specify
XML metadata like this

<field name="devices" persistence-modifier="persistent" table="NETWORK_DEVICES">
    <collection element-type="com.mydomain.samples.embedded.Device"/>
    <join>
        <primary-key name="NETWORK_DEV_PK">
            <column name="NETWORK_ID"/>
            <column name="DEVICE_IP_ADDR"/>
        </primary-key>
        <column name="NETWORK_ID"/>
    </join>
    <element>
        <embedded>
            <field name="name">
                <column name="DEVICE_NAME" allows-null="true"/>
            </field>
            <field name="ipAddress">
                <column name="DEVICE_IP_ADDR" allows-null="true"/>
            </field>
        </embedded>
    </element>
</field>

This results in the join table only having the columns "NETWORK_ID", "DEVICE_IP_ADDR", and
"DEVICE_NAME", and having a primary key as the composite of "NETWORK_ID" and
"DEVICE_IP_ADDR".

See also :-

• MetaData reference for <embedded> element

• MetaData reference for <element> element

• MetaData reference for <join> element

• Annotations reference for @Embedded

• Annotations reference for @Element

Embedding Map Keys/Values

 Applicable to RDBMS, MongoDB

In a typical 1-N map relationship between classes, the classes in the relationship are persisted to
their own table, and a join table forms the map linkage. With JDO and DataNucleus you have a
variation on the join table relation where you can persist either the key class or the value class, or

145

metadata_xml.html#embedded
metadata_xml.html#element
metadata_xml.html#join
annotations.html#Embedded
annotations.html#Element


both key class and value class into the join table. This is supported in DataNucleus with the
following provisos

• You can have inheritance in embedded keys/values and a discriminator is added (you must
define the discriminator in the metadata of the embedded type).

• When retrieving embedded keys/values, all fields are retrieved in one call. That is, fetch plans
are not utilised. This is because the embedded key/value has no identity so we have to retrieve
all initially.

It should be noted that where the map "key"/"value" is not persistable or of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to persistable
keys/values only. DataNucleus doesn’t support embedding reference type elements currently.

Let’s take an example. We are modelling a FilmLibrary, and in our simple model our FilmLibrary
has map of *Film*s, keyed by a String alias. So we define our classes as

public class FilmLibrary
{
    private String owner;
    private Map<String, Film> films = new HashMap<>();

    ...
}

public class Film
{
    private String name;
    private String director;

    ...
}

We decide that instead of Film having its own table, we want to persist them into the join table of
its map relationship with the FilmLibrary since they are only used by the library itself. We define
our XML MetaData like this

146



public class FilmLibrary
{
    @Key(column="FILM_ALIAS")
    @Value(embeddedMapping={
        @Embedded(members={
            @Persistent(name="name", column="FILM_NAME"),
            @Persistent(name="director", column="FILM_DIRECTOR")})
    })
    private Map<String, Film> films = new HashMap<>();

    ...
}

@PersistenceCapable(embeddedOnly="true")
public class Film
{
    private String name;
    private String director;

    ...
}

or using XML metadata

147



<jdo>
    <package name="com.mydomain.samples.embedded">
        <class name="FilmLibrary" identity-type="datastore" table="FILM_LIBRARY">
            ...
            <field name="films" persistence-modifier="persistent"
table="FILM_LIBRARY_FILMS">
                <map/>
                <join>
                    <column name="FILM_LIBRARY_ID"/>
                </join>
                <key>
                    <column name="FILM_ALIAS"/>
                </key>
                <value>
                    <embedded>
                        <field name="name">
                            <column name="FILM_NAME"/>
                        </field>
                        <field name="director">
                            <column name="FILM_DIRECTOR" allows-null="true"/>
                        </field>
                    </embedded>
                </value>
            </field>
        </class>

        <class name="Film" embedded-only="true">
            <field name="name"/>
            <field name="director"/>
        </class>
    </package>
</jdo>

So here we will end up with a table called "FILM_LIBRARY" with columns "FILM_LIBRARY_ID", and
"OWNER", and a table called "FILM_LIBRARY_FILMS" with columns "FILM_LIBRARY_ID",
"FILM_ALIAS", "FILM_NAME", "FILM_DIRECTOR". When we persist a FilmLibrary object, any films
are persisted into the FILM_LIBRARY_FILMS table.

Please note that if, instead of specifying the <embedded> block we had specified embedded-key of
embedded-value in the map element we would have ended up with the same thing, just that the
fields and columns would be mapped using their default mappings, and that the <embedded>
provides control over how they are mapped.

148



See also :-

• MetaData reference for <embedded> element

• MetaData reference for <key> element

• MetaData reference for <value> element

• MetaData reference for <join> element

• Annotations reference for @Embedded

• Annotations reference for @Key

• Annotations reference for @Value

149

metadata_xml.html#embedded
metadata_xml.html#key
metadata_xml.html#value
metadata_xml.html#join
annotations.html#Embedded
annotations.html#Key
annotations.html#Value


Serialised Fields
JDO provides a way for users to specify that a field will be persisted serialised. This is of use, for
example, to collections/maps/arrays which typically are stored using join tables or foreign-keys to
other records. By specifying that a field is serialised a column will be added to store that field and
the field will be serialised into it.

JDO’s definition of serialising encompasses several types of fields. These are described below

• Serialised Array fields - where you want to serialise the array into a single "BLOB" column.

• Serialised Collection fields - where you want to serialise the collection into a single "BLOB"
column.

• Serialised Collection elements - where you want to serialise the collection elements into a single
column in a join table.

• Serialised Map fields - where you want to serialise the map into a single "BLOB" column

• Serialised Map keys/values - where you want to serialise the map keys and/or values into single
column(s) in a join table.

• Serialised persistable fields - where you want to serialise a PC object into a single "BLOB"
column.

• Serialised Reference (Interface/Object) fields - where you want to serialise a reference field into
a single "BLOB" column.

• Serialised field to local disk - not part of the JDO spec but available as an option for RDBMS
datastores usage

Perhaps the most important thing to bear in mind when deciding to serialise a field is that that
object must implement java.io.Serializable.

 Queries cannot be performed on map keys/values stored as serialised.

Serialised Collections

 Applicable to RDBMS, HBase, MongoDB

Collections are usually persisted by way of either a join table, or by use of a foreign-key in the
element table. In some situations it is required to store the whole collection in a single column in
the table of the class being persisted. This prohibits the querying of such a collection, but will
persist the collection in a single statement. Let’s take an example. We have the following classes

150

mapping.html#array_serialised
#serialise_collection
#serialise_collection_element
#serialise_map
#serialise_map_key_value
#serialise_pc
#serialise_reference
#serialise_to_file


public class Farm
{
    Collection<Animal> animals;
    ...
}
public class Animal
{
    String name;
    Type type;
}

and we want the animals collection to be serialised into a single column in the table storing the
Farm class, so we define our MetaData like this

<field name="animals" serialized="true">
    <collection element-type="Animal"/>
    <column name="ANIMALS"/>
</field>

So we make use of the serialized attribute of <field>. This specification results in a table like this

There are some other combinations of MetaData tags that result in serialising of the whole
collection in the same way. These are as follows

• Collection of non-persistable elements, and no <join> is specified. Since the elements don’t
have a table of their own, the only option is to serialise the whole collection and it appears as a
single BLOB field in the table of the main class.

• Collection of persistable elements, with "embedded-element" set to *true and no <join> is
specified.* Since the elements are embedded and there is no join table, then the whole
collection is serialised as above.

See also :-

• MetaData reference for <field> element

• Annotations reference for @Persistent

• Annotations reference for @Serialized

Serialised Collection Elements

 Applicable to RDBMS

151

metadata_xml.html#field
annotations.html#Persistent
annotations.html#Serialized


In some situations you may want to serialise the element into a single column in the join table. Let’s
take an example. We have the same classes as in the previous case and we want the animals
collection to be stored in a join table, and the element serialised into a single column storing the
"Animal" object. We define our MetaData like this

@Persistent(table="FARM_ANIMALS")
@Element(serialised="true")
Collection<Animal> animals;

<field name="animals" table="FARM_ANIMALS">
    <collection element-type="Animal" serialised-element="true"/>
    <join column="FARM_ID_OID"/>
</field>

So we make use of the serialized-element attribute of <collection>. This specification results in tables
like this

See also :-

• MetaData reference for <collection> element

• MetaData reference for <join> element

• Annotations reference for @Element

Serialised Maps

 Applicable to RDBMS, HBase, MongoDB

Maps are usually persisted by way of a join table, or very occasionaly using a foreign-key in the
value table. In some situations it is required to store the whole map in a single column in the table
of the class being persisted. This prohibits the querying of such a map, but will persist the map in a
single statement. Let’s take an example. We have the following classes

152

metadata_xml.html#collection
metadata_xml.html#join
annotations.html#Element


public class ClassRoom
{
    Map<String, Child> children;
    ...
}
public class Child
{
    ...
}

and we want the children map to be serialised into a single column in the table storing the
ClassRoom class, so we define our MetaData like this

<field name="children" serialized="true">
    <map key-type="java.lang.String" value-type="Child"/>
    <column name="CHILDREN"/>
</field>

So we make use of the serialized attribute of <field>. This specification results in a table like this

There are some other combinations of MetaData tags that result in serialising of the whole map in
the same way. These are as follows

• Map<non-persistable, non-persistable>, and no <join> is specified. Since the keys/values
don’t have a table of their own, the only option is to serialise the whole map and it appears as a
single BLOB field in the table of the main class.

• Map<non-persistable, persistable>, with "embedded-value" set to *true and no <join> is
specified.* Since the keys/values are embedded and there is no join table, then the whole map is
serialised as above.

See also :-

• MetaData reference for <map> element

• Annotations reference for @Key

• Annotations reference for @Value

• Annotations reference for @Serialized

Serialised Map Keys/Values

 Applicable to RDBMS

153

metadata_xml.html#map
annotations.html#Key
annotations.html#Value
annotations.html#Serialized


Maps are usually persisted by way of a join table, or very occasionaly using a foreign-key in the
value table. In the join table case you have the option of serialising the keys and/or the values each
into a single (BLOB) column in the join table. This is performed in a similar way to serialised
elements for collections, but this time using the "serialized-key", "serialized-value" attributes. We
take the example in the previous section, with "a classroom of children" and the children stored in a
map field. This time we want to serialise the child object into the join table of the map

@Persistent(table="CLASS_CHILDREN")
@Value(serialised="true")
Map<String, Child> children;

or using XML metadata

<class name="ClassRoom">
    ...
    <field name="children" table="CLASS_CHILDREN">
        <map key-type="java.lang.String" value-type="Child" serialized-value="true"/>
        <join column="CLASSROOM_ID"/>
        <key column="ALIAS"/>
        <value column="CHILD"/>
    </field>
</class>
<class name="Child"/>

So we make use of the serialized-value attribute of <map>. This results in a schema like this

See also :-

• MetaData reference for <map> element

• MetaData reference for <join> element

• MetaData reference for <key> element

• MetaData reference for <value> element

• Annotations reference for @Key

• Annotations reference for @Value

Serialised persistable Fields

 Applicable to RDBMS, HBase, MongoDB

A field that is a persistable object is typically stored as a foreign-key relation between the container

154

metadata_xml.html#map
metadata_xml.html#join
metadata_xml.html#key
metadata_xml.html#value
annotations.html#Key
annotations.html#Value


object and the contained object. In some situations it is not necessary that the contained object has
an identity of its own, and for efficiency of access the contained object is required to be stored in a
BLOB column in the containing object’s datastore table. Let’s take an example. We have the
following classes

public class ClassRoom
{
    ...
    Teacher teacher;
}

public class Teacher {...}

and we want the teacher object to be serialised into a single column in the table storing the
ClassRoom class, so we define our MetaData like this

@Serialized
Teacher teacher;

or using XML metadata

<field name="teacher" serialized="true">
    <column name="TEACHER"/>
</field>

So we make use of the serialized attribute of <field>. This specification results in a table like this

Serialised Reference (Interface/Object) Fields

 Applicable to RDBMS

In some situations it is not necessary that the contained object has an identity of its own, and for
efficiency of access the contained object is required to be stored in a BLOB column in the
containing object’s datastore table. Let’s take an example using an interface field. We have the
following classes

155



public class ClassRoom
{
    Person teacher;
    ...
}
public interface Person {...}
public class Teacher implements Person {...}

and we want the teacher object to be serialised into a single column in the table storing the
ClassRoom class, so we define our MetaData like this

<field name="teacher" serialized="true">
    <column name="TEACHER"/>
</field>

So we make use of the serialized attribute of <field>. This specification results in a table like this

See also :-

• MetaData reference for <implements> element

• Annotations reference for @Serialized

Serialised Field to Local File

 Applicable to RDBMS

If you have a non-relation field that implements Serializable you have the option of serialising it
into a file on the local disk. This could be useful where you have a large file and don’t want to
persist very large objects into your RDBMS. Obviously this will mean that the field is no longer
queryable, but then if its a large file you likely don’t care about that. So let’s give an example

@Persistent
@Extension(vendorName="datanucleus", key="serializeToFileLocation" value
="person_avatars")
AvatarImage image;

Or using XML

156

metadata_xml.html#implements
annotations.html#Serialized


<field name="image" persistence-modifier="persistent">
    <extension vendor-name="datanucleus" key="serializeToFileLocation"
value="person_avatars"/>
</field>

So this will now persist a file into a folder person_avatars with filename as the String form of the
identity of the owning object. In a real world example you likely will specify the extension value as
an absolute path name, so you can place it anywhere in the local disk.

157



Schema
We have shown earlier how you define MetaData for a classes basic persistence, notating which
fields are persisted. The next step is to define how it maps to the datastore. Fields of a class are
mapped to columns of a table (note that with some datastores it is not called a 'table' or 'column',
but the concept is similar and we use 'table' and 'column' here to represent the mapping). If you
don’t specify the table and column names, then DataNucleus will generate table and column names
for you. You should specify your table and column names if you have an existing schema.
Failure to do so will mean that DataNucleus uses its own names and these will almost certainly not
match what you have in the datastore. There are several aspects to cover here

• Table and column names

• Column for datastore identity

• Column(s) for application identity

• Column nullability and default value

• Column Types

• Columns with no field in the class

• Position of a column in a table

• RDBMS : Mapping a class to an RDBMS View

• RDBMS : Supported types for a field

Tables and Column names
The main thing that developers want to do when they set up the persistence of their data is to
control the names of the tables and columns used for storing the classes and fields. This is an
essential step when mapping to an existing schema, because it is necessary to map the classes onto
the existing database entities. Let’s take an example

public class Hotel
{
    private String name;
    private String address;
    private String telephoneNumber;
    private int numberOfRooms;
    ...
}

In our case we want to map this class to a table called ESTABLISHMENT, and has columns NAME,
DIRECTION, PHONE and NUMBER_OF_ROOMS (amongst other things). So we define our Meta-Data
like this

158

#classes
#schema_names
#schema_datastoreidentity
#schema_applicationidentity
#schema_nulls_defaults
#schema_column_types
#schema_unmapped_columns
#schema_column_position
#schema_rdbms_views
#schema_rdbms_types


<class name="Hotel" table="ESTABLISHMENT">
    <field name="name">
        <column name="NAME"/>
    </field>
    <field name="address">
        <column name="DIRECTION"/>
    </field>
    <field name="telephoneNumber">
        <column name="PHONE"/>
    </field>
    <field name="numberOfRooms">
        <column name="NUMBER_OF_ROOMS"/>
    </field>
</class>

Alternatively, if you really want to embody schema info in your class, you can use annotations

@PersistenceCapable(table="ESTABLISHMENT")
public class Hotel
{
    @Column(name="NAME")
    private String name;
    @Column(name="DIRECTION")
    private String address;
    @Column(name="PHONE")
    private String telephoneNumber;
    @Column(name="NUMBER_OF_ROOMS")
    private int numberOfRooms;
}

So we have defined the table and the column names. It should be mentioned that if you don’t
specify the table and column names then DataNucleus will generate names for the datastore
identifiers. The table name will be based on the class name, and the column names will be based on
the field names and the role of the field (if part of a relationship).

See also :-

• Identifier Guide - defining the identifiers to use for table/column names

• MetaData reference for <column> element

• MetaData reference for <primary-key> element

• Annotations reference for @Column

• Annotations reference for @PrimaryKey

Column names for datastore-identity
When you select datastore-identity a surrogate column will be added in the datastore. You need to

159

#datastore_identifiers
metadata_xml.html#column
metadata_xml.html#primary-key
annotations.html#Column
annotations.html#PrimaryKey_Class


be able to define the column name if mapping to an existing schema (or wanting to control the
schema). So lets say we have the following

public class MyClass // persisted to table "MYCLASS"
{
    ...
}

public class MySubClass extends MyClass // persisted to table "MYSUBCLASS"
{
    ...
}

We want to define the names of the identity column in "MYCLASS" and "MYSUBCLASS". Here’s how
we do it

<class name="MyClass" table="MYCLASS">
    <datastore-identity>
        <column name="MY_PK_COLUMN"/>
    </datastore-identity>
    ...
</class>
<class name="MySubClass" table="MYSUBCLASS">
    <datastore-identity>
        <column name="MYSUB_PK_COLUMN"/>
    </datastore-identity>
    ...
</class>

Alternatively, you can specify these using annotations should you so wish.

@PersistenceCapable(table="MYCLASS")
@DatastoreIdentity(column="MY_PK_COLUMN")
public class MyClass
{
    ...
}

@PersistenceCapable(table="MYSUBCLASS")
@DatastoreIdentity(column="MYSUB_PK_COLUMN")
public class MySubClass extends MyClass
{
    ...
}

So we will have a PK column "MY_PK_COLUMN" in the table "MYCLASS", and a PK column
"MYSUB_PK_COLUMN" in the table "MYSUBCLASS" (and that corresponds to the "MY_PK_COLUMN"

160



value in "MYCLASS"). We could also do

<class name="MyClass" table="MYCLASS">
    <datastore-identity>
        <column name="MY_PK_COLUMN"/>
    </datastore-identity>
    ...
</class>
<class name="MySubClass" table="MYSUBCLASS">
    <inheritance strategy="new-table"/>
    <primary-key>
        <column name="MYSUB_PK_COLUMN"/>
    </primary-key>
    ...
</class>

See also :-

• Inheritance Guide - defining how to use inheritance between classes

• MetaData reference for <column> element

• MetaData reference for <primary-key> element

• Annotations reference for @Column

• Annotations reference for @PrimaryKey

Column names for application-identity
When you select application-identity you have some field(s) that form the "primary-key" of the class.
A common situation is that you have inherited classes and each class has its own table, and so the
primary-key column names can need defining for each class in the inheritance tree. So lets show an
example how to do it

public class MyClass // persisted to table "MYCLASS"
{
    long id; // PK field
    ...
}

public class MySubClass extends MyClass // persisted to table "MYSUBCLASS"
{
    ...
}

Defining the column name for "MyClass.id" is easy since we use the same as shown previously
"column" for the field. Obviously the table "MYSUBCLASS" will also need a PK column. Here’s how
we define the column mapping

161

mapping.html#inheritance
metadata_xml.html#column
metadata_xml.html#primary-key
annotations.html#Column
annotations.html#PrimaryKey_Class


<class name="MyClass" identity-type="application" table="MYCLASS">
    <field name="myPrimaryKeyField" primary-key="true">
        <column name="MY_PK_COLUMN"/>
    </field>
    ...
</class>
<class name="MySubClass" identity-type="application" table="MYSUBCLASS">
    <inheritance strategy="new-table"/>
    <primary-key>
        <column name="MYSUB_PK_COLUMN" target="MY_PK_COLUMN"/>
    </primary-key>
    ...
</class>

So we will have a PK column "MY_PK_COLUMN" in the table "MYCLASS", and a PK column
"MYSUB_PK_COLUMN" in the table "MYSUBCLASS" (and that corresponds to the "MY_PK_COLUMN"
value in "MYCLASS"). You can also use

<class name="MyClass" identity-type="application" table="MYCLASS">
    <field name="myPrimaryKeyField" primary-key="true">
        <column name="MY_PK_COLUMN"/>
    </field>
    ...
</class>
<class name="MySubClass" identity-type="application" table="MYSUBCLASS">
    <inheritance strategy="new-table">
        <join>
            <column name="MYSUB_PK_COLUMN" target="MY_PK_COLUMN"/>
        </join>
    </inheritance>
    ...
</class>

See also :-

• Inheritance Guide - defining how to use inheritance between classes

• MetaData reference for <inheritance> element

• MetaData reference for <column> element

• MetaData reference for <primary-key> element

• Annotations reference for @Inheritance

• Annotations reference for @Column

• Annotations reference for @PrimaryKey

162

mapping.html#inheritance
metadata_xml.html#inheritance
metadata_xml.html#column
metadata_xml.html#primary-key
annotations.html#Inheritance
annotations.html#Column
annotations.html#PrimaryKey_Class


Column nullability and default values
So we’ve seen how to specify the basic structure of a table, naming the table and its columns, and
how to control the types of the columns. We can extend this further to control whether the columns
are allowed to contain nulls and to set a default value for a column if we ever have need to insert
into it and not specify a particular column. Let’s take a related class for our hotel. Here we have a
class to model the payments made to the hotel.

public class Payment
{
    Customer customer;
    String bankTransferReference;
    String currency;
    double amount;
}

In this class we can model payments from a customer of an amount. Where the customer pays by
bank transfer we can save the reference number. Since our hotel is in the United Kingdom we want
the default currency to be pounds, or to use its ISO4217 currency code "GBP". In addition, since the
bank transfer reference is optional we want that column to be nullable. So let’s specify the
MetaData for the class.

<class name="Payment">
    <field name="customer" persistence-capable="persistent" column="CUSTOMER_ID"/>
    <field name="bankTransferReference">
        <column name="TRANSFER_REF" allows-null="true"/>
    </field>
    <field name="currency">
        <column name="CURRENCY" default-value="GBP"/>
    </field>
    <field name="amount" column="AMOUNT"/>
</class>

So we make use of the allows-null and default-value attributes. The table, when created by
DataNucleus, will then provide the default and nullability that we require. See also :-

• MetaData reference for <column> element

• Annotations reference for @Column

Column types
DataNucleus will provide a default type for any columns that it creates, but it will allow users to
override this default. The default that DataNucleus chooses is always based on the Java type for the
field being mapped. For example a Java field of type "int" will be mapped to a column type of
INTEGER in RDBMS datastores. Similarly String will be mapped to VARCHAR. To override the
default setting (and always the best policy if you are wanting your MetaData to give the same

163

metadata_xml.html#column
annotations.html#Column


datastore definition with all JDO implementations) you do as follows

<class name="Payment">
    <field name="customer" persistence-capable="persistent" column="CUSTOMER_ID">
    <field name="bankTransferReference">
        <column name="TRANSFER_REF" jdbc-type="VARCHAR" length="255" allows-
null="true"/>
    </field>
    <field name="currency">
        <column name="CURRENCY" jdbc-type="CHAR" length="3" default-value="GBP"/>
    </field>
    <field name="amount">
        <column name="AMOUNT" jdbc-type="DECIMAL" length="10" scale="2"/>
    </field>
</class>

So we have defined TRANSFER_REF to use VARCHAR(255) column type, CURRENCY to use CHAR(3)
column type, and AMOUNT to use DECIMAL(10,2) column type. Please be aware that DataNucleus
only supports persisting particular Java types to particular JDBC/SQL types. We have demonstrated
above the jdbc-type attribute, but there is also an sql-type attribute. This is to be used where you
want to map to some specific SQL type (and will not be needed in the vast majority of cases - the
jdbc-type should generally be used).

See also :-

• Types Guide - defining persistence of Java types

• RDBMS Types Guide - defining mapping of Java types to available JDBC/SQL types

• MetaData reference for <column> element

• Annotations reference for @Column

Columns with no field in the class
DataNucleus supports mapping of columns in the datastore that have no associated field in the java
class. These are useful where you maybe have a table used by other applications and dont use some
of the information in your Java model. DataNucleus needs to know about these columns so that it
can validate the schema correctly, and also insert particular values when inserting objects into the
table. You could handle this by defining your schema yourself so that the particular columns have
"DEFAULT" settings, but this way you allow DataNucleus to know about all information. So to give
an example

164

mapping.html#field_types
../datastores/datastores.html#rdbms_datastore_types
metadata_xml.html#column
annotations.html#Column


<class name="Hotel" table="ESTABLISHMENT">
    <field name="name">
        <column name="NAME"/>
    </field>
    <field name="address">
        <column name="DIRECTION"/>
    </field>
    <field name="telephoneNumber">
        <column name="PHONE"/>
    </field>
    <field name="numberOfRooms">
        <column name="NUMBER_OF_ROOMS"/>
    </field>
    <column name="YEAR_ESTABLISHED" jdbc-type="INTEGER" insert-value="1980"/>
    <column name="MANAGER_NAME" jdbc-type="VARCHAR" insert-value="N/A"/>
</class>

So in this example our table "ESTABLISHMENT" has the columns associated with the specified fields
and also has columns "YEAR_ESTABLISHED" (that is INTEGER-based and will be given a value of
"1980" on any inserts) and "MANAGER_NAME" (VARCHAR-based and will be given a value of "N/A"
on any inserts).

Position of column in a table
With some datastores it is desirable to be able to specify the relative position of a column in the
table schema. The default (for DataNucleus) is just to put them in ascending alphabetical order. JDO
allows definition of this using the position attribute on a column. See fields/properties column
positioning docs for details.

RDBMS : Views

The standard situation with an RDBMS datastore is to map classes to Tables. The majority of
RDBMS also provide support for Views, providing the equivalent of a read-only SELECT across
various tables. DataNucleus also provides support for querying such Views (though not persisting
into them). This provides more flexibility to the user where they have data and need to display it in
their application. Support for Views is described below.

When you want to access data according to a View, you are required to provide a (persistable) class
that will accept the values from the View when queried, and Meta-Data for the class that defines the
View and how it maps onto the provided class. Let’s take an example. We have a View
SALEABLE_PRODUCT in our database as follows, defined based on data in a PRODUCT table.

165

mapping.html#member_position
mapping.html#member_position


CREATE VIEW SALEABLE_PRODUCT (ID, NAME, PRICE, CURRENCY) AS
    SELECT ID, NAME, CURRENT_PRICE AS PRICE, CURRENCY FROM PRODUCT WHERE
PRODUCT.STATUS_ID = 1

So we define a class to represent the values from this View.

package mydomain.views;

public class SaleableProduct
{
    String id;
    String name;
    double price;
    String currency;

    public String getId()
    {
        return id;
    }

    public String getName()
    {
        return name;
    }

    public double getPrice()
    {
        return price;
    }

    public String getCurrency()
    {
        return currency;
    }
}

and then we define how this class is mapped to the View, here using XML but equally possible
using annotations

166



<?xml version="1.0"?>
<!DOCTYPE jdo SYSTEM "file:/javax/jdo/jdo.dtd">
<jdo>
    <package name="mydomain.views">
        <class name="SaleableProduct" identity-type="nondurable"
table="SALEABLE_PRODUCT">
            <field name="id"/>
            <field name="name"/>
            <field name="price"/>
            <field name="currency"/>

            <!-- This is the "generic" SQL92 version of the view. -->
            <extension vendor-name="datanucleus" key="view-definition" value="
CREATE VIEW SALEABLE_PRODUCT
(
    {this.id},
    {this.name},
    {this.price},
    {this.currency}
) AS
SELECT ID, NAME, CURRENT_PRICE AS PRICE, CURRENCY FROM PRODUCT
WHERE PRODUCT.STATUS_ID = 1"/>
        </class>
    </package>
</jdo>

Please note the following

• We’ve defined our class as using "nondurable" identity. This was mandatory in all versions up to
5.0.7 but after that is optional and you can use application/datastore identity also.

• We’ve specified the "table", which in this case is the view name - otherwise DataNucleus would
create a name for the view based on the class name.

• We’ve defined a DataNucleus extension view-definition that defines the view for this class. If the
view doesn’t already exist it doesn’t matter since DataNucleus (when used with
autoCreateSchema) will execute this construction definition.

• The view-definition can contain macros utilising the names of the fields in the class, and hence
borrowing their column names (if we had defined column names for the fields of the class).

• You can also utilise other classes in the macros, and include them via a DataNucleus MetaData
extension view-imports (not shown here)

• If your View already exists you are still required to provide a view-definition even though
DataNucleus will not be utilising it, since it also uses this attribute as the flag for whether it is a
View or a Table - just make sure that you specify the "table" also in the MetaData.

• If you have a relation to the class represented by a View, you cannot expect it to create an FK in
the View. The View will map on to exactly the members defined in the class it represents. i.e
cannot have a 1-N FK uni relation to the class with the View.

167



We can now utilise this class within normal DataNucleus querying operation.

Extent<SaleableProduct> e = pm.getExtent(SaleableProduct.class);
Iterator<SaleableProduct> iter = e.iterator();
while (iter.hasNext())
{
    SaleableProduct product = iter.next();
}

Hopefully that has given enough detail on how to create and access views from with a DataNucleus-
enabled application.

RDBMS : Datastore Types
As we saw in the Types Guide DataNucleus supports the persistence of a large range of Java field
types. With RDBMS datastores, we have the notion of tables/columns in the datastore and so each
Java type is mapped across to a column or a set of columns in a table. It is important to understand
this mapping when mapping to an existing schema for example. In RDBMS datastores a java type is
stored using JDBC types. DataNucleus supports the use of the vast majority of the available JDBC
types.

When persisting a Java type in general it is persisted into a single column. For example a String will
be persisted into a VARCHAR column by default. Some types (e.g Color) have more information to
store than we can conveniently persist into a single column and so use multiple columns. Other
types (e.g Collection) store their information in other ways, such as foreign keys.

This table shows the Java types we saw earlier and whether they can be queried using JDOQL
queries, and what JDBC types can be used to store them in your RDBMS datastore. Not all RDBMS
datastores support all of these options. While DataNucleus always tries to provide a complete list
sometimes this is impossible due to limitations in the underlying JDBC driver

Java Type Numb
er
Colum
ns

Query
able

JDBC Type(s)

boolean 1  BIT, CHAR ('Y','N'), BOOLEAN, TINYINT,
SMALLINT, NUMERIC

byte 1  TINYINT, SMALLINT, NUMERIC

char 1  CHAR, INTEGER, NUMERIC

double 1  DOUBLE, DECIMAL, FLOAT

168

mapping.html#field_types


Java Type Numb
er
Colum
ns

Query
able

JDBC Type(s)

float 1  FLOAT, REAL, DOUBLE, DECIMAL

int 1  INTEGER, BIGINT, NUMERIC

long 1  BIGINT, NUMERIC, DOUBLE, DECIMAL,
INTEGER

short 1  SMALLINT, INTEGER, NUMERIC

boolean[] 1  [5] LONGVARBINARY, BLOB

byte[] 1  [5] LONGVARBINARY, BLOB

char[] 1  [5] LONGVARBINARY, BLOB

double[] 1  [5] LONGVARBINARY, BLOB

float[] 1  [5] LONGVARBINARY, BLOB

int[] 1  [5] LONGVARBINARY, BLOB

long[] 1  [5] LONGVARBINARY, BLOB

short[] 1  [5] LONGVARBINARY, BLOB

java.lang.Boolean 1  BIT, CHAR('Y','N'), BOOLEAN, TINYINT,
SMALLINT

java.lang.Byte 1  TINYINT, SMALLINT, NUMERIC

java.lang.Character 1  CHAR, INTEGER, NUMERIC

java.lang.Double 1  DOUBLE, DECIMAL, FLOAT

java.lang.Float 1  FLOAT, REAL, DOUBLE, DECIMAL

java.lang.Integer 1  INTEGER, BIGINT, NUMERIC

java.lang.Long 1  BIGINT, NUMERIC, DOUBLE, DECIMAL,
INTEGER

java.lang.Short 1  SMALLINT, INTEGER, NUMERIC

java.lang.Boolean[] 1  [5] LONGVARBINARY, BLOB

java.lang.Byte[] 1  [5] LONGVARBINARY, BLOB

java.lang.Character[] 1  [5] LONGVARBINARY, BLOB

java.lang.Double[] 1  [5] LONGVARBINARY, BLOB

java.lang.Float[] 1  [5] LONGVARBINARY, BLOB

java.lang.Integer[] 1  [5] LONGVARBINARY, BLOB

java.lang.Long[] 1  [5] LONGVARBINARY, BLOB

169



Java Type Numb
er
Colum
ns

Query
able

JDBC Type(s)

java.lang.Short[] 1  [5] LONGVARBINARY, BLOB

java.lang.Number 1 

java.lang.Object 1 LONGVARBINARY, BLOB

java.lang.String [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [6], UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.lang.StringBuffer [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [6], UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.lang.String[] 1  [5] LONGVARBINARY, BLOB

java.lang.Enum 1  LONGVARBINARY, BLOB, VARCHAR, INTEGER

java.lang.Enum[] 1  [5] LONGVARBINARY, BLOB

java.math.BigDecimal 1  DECIMAL, NUMERIC

java.math.BigInteger 1  NUMERIC, DECIMAL

java.math.BigDecimal[] 1  [5] LONGVARBINARY, BLOB

java.math.BigInteger[] 1  [5] LONGVARBINARY, BLOB

java.sql.Date 1  DATE, TIMESTAMP

java.sql.Time 1  TIME, TIMESTAMP

java.sql.Timestamp 1  TIMESTAMP

java.util.ArrayList 0 

java.util.BitSet 0  LONGVARBINARY, BLOB

java.util.Calendar [3] 1 or 2  INTEGER, VARCHAR, CHAR

java.util.Collection 0 

java.util.Currency 1  VARCHAR, CHAR

java.util.Date 1  TIMESTAMP, DATE, CHAR, BIGINT

java.util.Date[] 1  [5] LONGVARBINARY, BLOB

java.util.GregorianCalendar [2] 1 or 2  INTEGER, VARCHAR, CHAR

java.util.HashMap 0 

java.util.HashSet 0 

java.util.Hashtable 0 

java.util.LinkedHashMap 0 

170



Java Type Numb
er
Colum
ns

Query
able

JDBC Type(s)

java.util.LinkedHashSet 0 

java.util.LinkedList 0 

java.util.List 0 

java.util.Locale [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [6], UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.util.Locale[] 1  [5] LONGVARBINARY, BLOB

java.util.Map 0 

java.util.Properties 0 

java.util.PriorityQueue 0 

java.util.Queue 0 

java.util.Set 0 

java.util.SortedMap 0 

java.util.SortedSet 0 

java.util.Stack 0 

java.util.TimeZone [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.util.TreeMap 0 

java.util.TreeSet 0 

java.util.UUID [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.util.Vector 0 

java.awt.Color [1] 4  INTEGER

java.awt.Point [2] 2  INTEGER

java.awt.image.BufferedImage
[4]

1  LONGVARBINARY, BLOB

java.net.URI [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

171



Java Type Numb
er
Colum
ns

Query
able

JDBC Type(s)

java.net.URL [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.io.Serializable 1  LONGVARBINARY, BLOB

Persistable 1  [embedded]

Persistable[] 1  [5]

• [1] - java.awt.Color - stored in 4 columns (red, green, blue, alpha). ColorSpace is not persisted.

• [2] - java.awt.Point - stored in 2 columns (x and y).

• [3] - java.util.Calendar - stored in 2 columns (milliseconds and timezone).

• [4] - java.awt.image.BufferedImage is stored using JPG image format

• [5] - Array types are queryable if not serialised, but stored to many rows

• [6] - DATALINK JDBC type supported on DB2 only. Uses the SQL function
DLURLCOMPLETEONLY to fetch from the datastore. You can override this using the select-
function extension. See the JDO MetaData reference.

• [7] - UNIQUEIDENTIFIER JDBC type supported on MSSQL only.

• [8] - Oracle treats an empty string as the same as NULL. To workaround this limitation
DataNucleus replaces the empty string with the character \u0001.

• [9] - XMLTYPE JDBC type supported on Oracle only.

 If you need to extend the provided DataNucleus capabilities in terms of its datastore types
support you can utilise a plugin point.

DataNucleus provides support for the majority of the JDBC types with RDBMS. The support is shown
below.

JDBC Type Supported Restrictions

ARRAY  Only for PostgreSQL array type

BIGINT 

BINARY  Only for geospatial types on MySQL

BIT 

BLOB 

BOOLEAN 

CHAR 

CLOB 

172

metadata_xml.html#field_select_function
../extensions/extensions.html#rdbms_datastore_types


JDBC Type Supported Restrictions

DATALINK  Only on DB2

DATE 

DECIMAL 

DISTINCT 

DOUBLE 

FLOAT 

INTEGER 

JAVA_OBJECT 

LONGVARBINARY 

LONGVARCHAR 

NCHAR 

NULL 

NUMERIC 

NVARCHAR 

OTHER 

REAL 

REF 

SMALLINT 

STRUCT  Only for geospatial types on Oracle

TIME 

TIMESTAMP 

TINYINT 

VARBINARY 

VARCHAR 

Secondary Tables

 Applicable to RDBMS

The standard JDO persistence strategy is to persist an object of a class into its own table. In some
situations you may wish to map the class to a primary table as well as one or more secondary
tables. For example when you have a Java class that could have been split up into 2 separate classes
yet, for whatever reason, has been written as a single class, however you have a legacy datastore
and you need to map objects of this class into 2 tables. JDO allows persistence of fields of a class into

173



secondary tables.

The process for managing this situation is best demonstrated with an example. Let’s suppose we
have a class that represents a Printer. The Printer class contains within it various attributes of the
toner cartridge. So we have

package com.mydomain.samples.secondarytable;

public class Printer
{
    long id;
    String make;
    String model;

    String tonerModel;
    int tonerLifetime;

    ...
}

Now we have a database schema that has 2 tables (PRINTER and PRINTER_TONER) in which to
store objects of this class. So we need to tell DataNucleus to perform this mapping. So we define the
MetaData for the Printer class like this

<class name="Printer" table="PRINTER">
    <join table="PRINTER_TONER" column="PRINTER_REFID"/>

    <field name="id" primary-key="true" column="PRINTER_ID"/>
    <field name="make" column="MAKE"/>
    <field name="model" column="MODEL"/>
    <field name="tonerModel" table="PRINTER_TONER" column="MODEL"/>
    <field name="tonerLifetime" table="PRINTER_TONER" column="LIFETIME"/>
</class>

So here we have defined that objects of the Printer class will be stored in the primary table
PRINTER. In addition we have defined that some fields are stored in the table PRINTER_TONER.
This is achieved by way of

• We will store tonerModel and tonerLifetime in the table PRINTER_TONER. This is achieved by
using <field table="PRINTER_TONER">

• The table PRINTER_TONER will use a primary key column called PRINTER_REFID. This is
achieved by using <join table="PRINTER_TONER" column="PRINTER_REFID"/>

You could equally specify this using annotations

174



@PersistenceCapable
@Join(table="PRINTER_TONER", column="PRINTER_REFID")
public class Printer
{
    @Persistent(primaryKey="true", column="PRINTER_ID")
    long id;
    @Column(name="MAKE")
    String make;
    @Column(name="MODEL")
    String model;

    @Persistent(table="PRINTER_TONER", column="MODEL")
    String tonerModel;
    @Persistent(table="PRINTER_TONER", column="LIFETIME")
    int tonerLifetime;
    ...
}

This results in the following database tables :- 

So we now have our primary and secondary database tables. The primary key of the
PRINTER_TONER table serves as a foreign key to the primary class. Whenever we persist a Printer
object a row will be inserted into both of these tables.

Specifying the primary key

You saw above how we defined the column name that will be the primary key of the secondary
table (the PRINTER_REFID column). What we didn’t show is how to specify the name of the primary
key constraint to be generated. To do this you change the MetaData to

<class name="Printer" identity-type="datastore" table="PRINTER">
    <join table="PRINTER_TONER" column="PRINTER_REFID">
        <primary-key name="TONER_PK"/>
    </join>

    ...
</class>

So this will create the primary key constraint with the name "TONER_PK".

See also :-

• MetaData reference for <primary-key> element

• MetaData reference for <join> element

175

metadata_xml.html#primary-key
metadata_xml.html#join


• Annotations reference for @PrimaryKey

• Annotations reference for @Join

Constraints
A datastore often provides ways of constraining the storage of data to maintain relationships and
improve performance. These are known as constraints and they come in various forms. These are :-

• Indexes - these are used to mark fields that are referenced often as indexes so that when they
are used the performance is optimised.

• Unique constraints - these are placed on fields that should have a unique value. That is only one
object will have a particular value.

• Foreign-Keys - these are used to interrelate objects, and allow the datastore to keep the integrity
of the data in the datastore.

• Primary-Keys - allow the PK to be set, and also to have a name.

Indexes

 Applicable to RDBMS, NeoDatis, MongoDB.

Many datastores provide the ability to have indexes defined to give performance benefits. With
RDBMS the indexes are specified on the table and the indexes to the rows are stored separately. In
the same way an ODBMS typically allows indexes to be specified on the fields of the class, and these
are managed by the datastore. JDO provides a mechanism for defining indexes, and hence if a
developer knows that a particular field is going to be highly used for querying, they can select that
field to be indexed in their (JDO) persistence solution. Let’s take an example class, and show how to
specify this

public class Booking
{
    private int bookingType;
    ...
}

We decide that our bookingType is going to be highly used and we want to index this in the
persistence tool. To do this we define the Meta-Data for our class as

<class name="Booking">
    <field name="bookingType">
        <index name="BOOKING_TYPE_INDEX"/>
    </field>
</class>

This will mean that DataNucleus will create an index in the datastore for the field and the index
will have the name BOOKING_TYPE_INDEX (for datastores that support using named indexes). If we

176

annotations.html#PrimaryKey
annotations.html#Join
#index
#unique
#fk
#pk


had wanted the index to provide uniqueness, we could have made this

<index name="BOOKING_TYPE_INDEX" unique="true"/>

This has demonstrated indexing the fields of a class. The above example will index together all
columns for that field. In certain circumstances you want to be able to index from the column point
of view. So we are thinking more from a database perspective. Here we define our indexes at the
<class> level, like this

<class name="Booking">
    <index name="MY_BOOKING_INDEX">
        <column name="BOOKING"/>
    </index>
    ...
</class>

This creates an index for the specified column (where the datastore supports columns i.e RDBMS).

Should you have need to tailor the index creation, for example to generate a particular type of
index (where the datastore supports it), you can specify extended settings that is appended to the
end of any CREATE INDEX statement.

<class name="Booking">
    <index name="MY_BOOKING_INDEX">
        <extension vendor-name="datanucleus" key="extended-setting" value=" USING
HASH"/>
    </index>
    ...
</class>

See also :-

• MetaData reference for <index> element

• Annotations reference for @Index

• Annotations reference for @Index (class level)

Unique constraints

 Applicable to RDBMS, NeoDatis, MongoDB.

Some datastores provide the ability to have unique constraints defined on tables to give extra
control over data integrity. JDO provides a mechanism for defining such unique constraints. Lets
take the previous class, and show how to specify this

177

metadata_xml.html#index
annotations.html#Index
annotations.html#Index_Class


<class name="Booking">
    <field name="bookingType">
        <unique name="BOOKING_TYPE_CONSTRAINT"/>
    </field>
</class>

So in an identical way to the specification of an index. This example specification will result in the
column(s) for "bookingType" being enforced as unique in the datastore. In the same way you can
specify unique constraints directly to columns - see the example above for indexes.

Again, as for index, you can also specify unique constraints at "class" level in the MetaData file. This
is useful to specify where the composite of 2 or more columns or fields are unique. So with this
example

<class name="Booking">
    <unique name="UNIQUE_PERF">
        <field name="performanceDate"/>
        <field name="startTime"/>
    </unique>

    <field name="performanceDate"/>
    <field name="startTime"/>
</class>

The table for Booking has a unique constraint on the columns for the fields performanceDate and
startTime

See also :-

• MetaData reference for <unique> element

• Annotations reference for @Unique

• Annotations reference for @Unique (class level)

Foreign Keys

 Applicable to RDBMS

When objects have relationships with one object containing, for example, a Collection of another
object, it is common to store a foreign key in the datastore representation to link the two associated
tables. Moreover, it is common to define behaviour about what happens to the dependent object
when the owning object is deleted. Should the deletion of the owner cause the deletion of the
dependent object maybe ? Lets take an example

178

metadata_xml.html#unique
annotations.html#Unique
annotations.html#Unique_Class


public class Hotel
{
    private Set rooms;
    ...
}

public class Room
{
    private int numberOfBeds;
    ...
}

We now want to control the relationship so that it is linked by a named foreign key, and that we
cascade delete the Room object when we delete the Hotel. We define the Meta-Data like this

<class name="Hotel">
    <field name="rooms">
        <collection element-type="com.mydomain.samples.hotel.Room"/>
        <foreign-key name="HOTEL_ROOMS_FK" delete-action="cascade"/>
    </field>
</class>

So we now have given the datastore control over the cascade deletion strategy for objects stored in
these tables. Please be aware that JDO provides Dependent Fields as a way of allowing cascade
deletion. The difference here is that Dependent Fields is controlled by DataNucleus, whereas foreign
key delete actions are controlled by the datastore (assuming the datastore supports it even)

DataNucleus provides an extension that can give significant benefit to users. This is provided via
the PersistenceManagerFactory datanucleus.rdbms.constraintCreateMode. This property has 2
values. The default is DataNucleus which will automatically decide which foreign keys are required
to satisfy the relationships that have been specified, whilst utilising the information provided in the
MetaData for foreign keys. The other option is JDO2 which will simply create foreign keys that have
been specified in the MetaData file(s).

Note that the foreign-key for a 1-N FK relation can be specified as above, or under the element
element. Note that the foreign-key for a 1-N Join Table relation is specified under field for the FK
from owner to join table, and is specified under element for the FK from join table to element table.

In the special case of application-identity and inheritance there is a foreign-key from subclass to
superclass. You can define this as follows

179

persistence.html#dependent_fields


<class name="MySubClass">
    <inheritance>
        <join>
            <foreign-key name="ID_FK"/>
        </join>
    </inheritance>
</class>

See also :-

• MetaData reference for <foreignkey> element

• Annotations reference for @ForeignKey

• Deletion of related objects using FK constraints

Primary Keys

 Applicable to RDBMS

In RDBMS datastores, it is accepted as good practice to have a primary key on all tables. You specify
in other parts of the MetaData which fields are part of the primary key (if using applicatioin
identity), or you define the name of the column DataNucleus should use for the primary key (if
using datastore identity). What these other parts of the MetaData don’t allow is specifying the
constraint name for the primary key. You can specify this if you wish, like this

<class name="Booking">
    <primary-key name="BOOKING_PK"/>
    ...
</class>

When the schema is generated for this table, the primary key will be given the specified name, and
will use the column(s) specified by the identity type in use.

In the case where you have a 1-N/M-N relation using a join table you can specify the name of the
primary key constraint used as follows

<class name="Hotel">
    <field name="rooms">
        <collection element-type="com.mydomain.samples.hotel.Room"/>
        <join>
            <primary-key name="HOTEL_ROOM_PK"/>
        </join>
    </field>
</class>

This creates a PK constraint with name "HOTEL_ROOM_PK".

180

metadata_xml.html#foreignkey
annotations.html#ForeignKey
persistence.html#cascading


See also :-

• MetaData reference for <primary-key> element

• Annotations reference for @PrimaryKey

• Annotations reference for @PrimaryKey (class level)

Datastore Identifiers
A datastore identifier is a simple name of a database object, such as a column, table, index, or view,
and is composed of a sequence of letters, digits, and underscores ( _ ) that represents it’s name.
DataNucleus allows users to specify the names of tables, columns, indexes etc but if the user doesn’t
specify these DataNucleus will generate names.

Generation of identifier names for RDBMS is controlled by an IdentifierFactory, and DataNucleus
provides a default implementation. You can provide your own RDBMS IdentifierFactory plugin to
give your own preferred naming if so desired. You set the RDBMS IdentifierFactory by setting the
persistence property datanucleus.identifierFactory. Set it to the symbolic name of the factory you
want to use. JDO doesn’t define what the names of datastore identifiers should be but DataNucleus
provides the following factories for your use.

• datanucleus2 RDBMS IdentifierFactory (default for JDO persistence)

• jpa RDBMS IdentifierFactory (default for JPA persistence)

• datanucleus1 RDBMS IdentifierFactory (used in DataNucleus v1)

• jpox RDBMS IdentifierFactory (compatible with JPOX)

Generation of identifier names for non-RDBMS datastores is controlled by an NamingFactory, and
DataNucleus provides a default implementation. You can provide your own NamingFactory plugin
to give your own preferred naming if so desired. You set the NamingFactory by setting the
persistence property datanucleus.identifier.namingFactory. Set it to the symbolic name of the
factory you want to use. JDO doesn’t define what the names of datastore identifiers should be but
DataNucleus provides the following factories for your use.

• datanucleus2 NamingFactory (default for JDO persistence for non-RDBMS)

• jpa NamingFactory (default for JPA persistence for non-RDBMS)

In describing the different possible naming conventions available out of the box with DataNucleus
we’ll use the following example

181

metadata_xml.html#primary-key
annotations.html#PrimaryKey
annotations.html#PrimaryKey_Class
../extensions/extensions.html#rdbms_identifierfactory
#rdbms_datanucleus2
#rdbms_jpa
#rdbms_datanucleus1
#rdbms_jpox
../extensions/extensions.html#identifier_namingfactory
#datanucleus2
#jpa


class MyClass
{
    String myField1;
    Collection<MyElement> elements1; // Using join table
    Collection<MyElement> elements2; // Using foreign-key
}

class MyElement
{
    String myElementField;
    MyClass myClass2;
}

NamingFactory 'datanucleus2'

This is default for JDO persistence to non-RDBMS datastores. Using the example above, the rules in
this NamingFactory mean that, assuming that the user doesn’t specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS

• When using datastore identity MYCLASS will have a column called MYCLASS_ID

• MyClass.myField1 will be persisted into a column called MYFIELD1

• MyElement will be persisted into a table named MYELEMENT

• MyClass.elements1 will be persisted into a join table called MYCLASS_ELEMENTS1

• MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table) and
MYELEMENT_ID_EID (FK to element table)

• MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY, STRING_VAL
for non-PC elements/keys/values of collections/maps

• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OWN or
ELEMENTS2_MYCLASS_ID_OID (FK to owner) table

• Any discriminator column will be called DISCRIMINATOR

• Any index column in a List will be called IDX

• Any adapter column added to a join table to form part of the primary key will be called IDX

• Any version column for a table will be called VERSION

NamingFactory 'jpa'

The NamingFactory "jpa" aims at providing a naming policy consistent with the "JPA" specification.
Using the same example above, the rules in this NamingFactory mean that, assuming that the user
doesn’t specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS

• When using datastore identity MYCLASS will have a column called MYCLASS_ID

• MyClass.myField1 will be persisted into a column called MYFIELD1

182



• MyElement will be persisted into a table named MYELEMENT

• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT

• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to owner table)
and ELEMENTS1_ELEMENT_ID (FK to element table)

• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to owner)
table

• Any discriminator column will be called DTYPE

• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER

• Any adapter column added to a join table to form part of the primary key will be called IDX

• Any version column for a table will be called VERSION

RDBMS IdentifierFactory 'datanucleus2'

This became the default for JDO persistence from DataNucleus v2.x onwards and changes a few
things over the previous "datanucleus1" factory, attempting to make the naming more concise and
consistent (we retain "datanucleus1" for backwards compatibility).

Using the same example above, the rules in this RDBMS IdentifierFactory mean that, assuming that
the user doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS

• When using datastore identity MYCLASS will have a column called MYCLASS_ID

• MyClass.myField1 will be persisted into a column called MYFIELD1

• MyElement will be persisted into a table named MYELEMENT

• MyClass.elements1 will be persisted into a join table called MYCLASS_ELEMENTS1

• MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table) and
MYELEMENT_ID_EID (FK to element table)

• MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY, STRING_VAL
for non-PC elements/keys/values of collections/maps

• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OWN or
ELEMENTS2_MYCLASS_ID_OID (FK to owner) table

• Any discriminator column will be called DISCRIMINATOR

• Any index column in a List will be called IDX

• Any adapter column added to a join table to form part of the primary key will be called IDX

• Any version column for a table will be called VERSION

RDBMS IdentifierFactory 'datanucleus1'

This was the default in DataNucleus v1.x for JDO persistence and provided a reasonable default
naming of datastore identifiers using the class and field names as its basis.

Using the example above, the rules in this RDBMS IdentifierFactory mean that, assuming that the

183



user doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS

• When using datastore identity MYCLASS will have a column called MYCLASS_ID

• MyClass.myField1 will be persisted into a column called MY_FIELD1

• MyElement will be persisted into a table named MYELEMENT

• MyClass.elements1 will be persisted into a join table called MYCLASS_ELEMENTS1

• MYCLASS_ELEMENTS1 will have columns called MYCLASS_ID_OID (FK to owner table) and
MYELEMENT_ID_EID (FK to element table)

• MYCLASS_ELEMENTS1 will have column names like STRING_ELE, STRING_KEY, STRING_VAL
for non-PC elements/keys/values of collections/maps

• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID_OID or
ELEMENTS2_ID_OID (FK to owner) table

• Any discriminator column will be called DISCRIMINATOR

• Any index column in a List will be called INTEGER_IDX

• Any adapter column added to a join table to form part of the primary key will be called
ADPT_PK_IDX

• Any version column for a table will be called OPT_VERSION

RDBMS IdentifierFactory 'jpa'

The RDBMS IdentifierFactory "jpa" aims at providing a naming policy consistent with the "JPA"
specification.

Using the same example above, the rules in this RDBMS IdentifierFactory mean that, assuming that
the user doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS

• When using datastore identity MYCLASS will have a column called MYCLASS_ID

• MyClass.myField1 will be persisted into a column called MYFIELD1

• MyElement will be persisted into a table named MYELEMENT

• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT

• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to owner table)
and ELEMENTS1_ELEMENT_ID (FK to element table)

• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to owner)
table

• Any discriminator column will be called DTYPE

• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER

• Any adapter column added to a join table to form part of the primary key will be called IDX

• Any version column for a table will be called VERSION

184



RDBMS IdentifierFactory 'jpox'

This RDBMS IdentifierFactory exists for backward compatibility with JPOX 1.2.0. If you experience
changes of schema identifiers when migrating from JPOX 1.2.0 to datanucleus, you should give this
one a try. Schema compatibility between JPOX 1.2.0 and datanucleus had been broken e.g. by the
number of characters used in hash codes when truncating identifiers: this has changed from 2 to 4.

Controlling the Case

The underlying datastore will define what case of identifiers are accepted. By default, DataNucleus
will capitalise names (assuming that the datastore supports it). You can however influence the case
used for identifiers. This is specifiable with the persistence property datanucleus.identifier.case,
having the following values

• UpperCase: identifiers are in upper case

• LowerCase: identifiers are in lower case

• MixedCase: No case changes are made to the name of the identifier provided by the user (class
name or metadata).


Some datastores only support UPPERCASE or lowercase identifiers and so setting
this parameter may have no effect if your database doesn’t support that option.


This case control only applies to DataNucleus-generated identifiers. If you
provide your own identifiers for things like schema/catalog etc then you need to
specify those using the case you wish to use in the datastore (including quoting as
necessary)

185


	JDO Mapping Guide (v5.0)
	Table of Contents
	Classes
	Persistence Capable Classes
	Persistence-Aware Classes
	Read-Only Classes

	Inheritance
	Discriminator
	New Table
	Subclass table
	Superclass table
	Complete table
	Retrieval of inherited objects

	Auditing
	Fields/Properties
	Persistent Fields
	Persistent Properties
	Overriding Superclass Field/Property MetaData
	Field/Property positioning
	Making a field/property read-only

	Field Types
	Primitive and java.lang Types
	java.math types
	Temporal Types (java.util, java.sql. java.time, Jodatime)
	Collection/Map types
	Enums
	Geospatial Types
	Other Types
	Arrays
	Generic Type Variables
	JDO Attribute Converters
	Types extending Collection/Map
	TypeConverters

	Identity
	Datastore Identity
	Application Identity
	Nondurable Identity
	Compound Identity Relationships

	Versioning
	Versioning using a surrogate column
	Versioning using a field/property of the class

	Value Generation
	native
	sequence
	identity
	increment
	uuid-string
	uuid-hex
	datastore-uuid-hex
	max
	uuid
	uuid-object
	auid
	timestamp
	timestamp-value
	Standalone ID generation

	1-1 Relations
	Unidirectional
	Bidirectional

	1-N Relations
	equals() and hashCode()
	Collection<PC> Unidirectional JoinTable
	Collection<PC> Unidirectional FK
	Collection<PC> Bidirectional JoinTable
	Collection<PC> Bidirectional FK
	Using a List
	Collection<Simple> via JoinTable
	Collection<Simple> using AttributeConverter via column
	Collection<PC> via Shared JoinTable
	Collection<PC> via Shared FK
	Map<PC,PC> using Join Table
	Map<Simple,PC> using Join Table
	Map<PC,Simple> using Join Table
	Map<Simple, Simple> using Join Table
	Map<Simple, Simple> using AttributeConverter via column
	Map<Simple,PC> Unidirectional FK (key stored in value)
	Map<Simple,PC> Unidirectional FK (key stored in value)
	Map<PC,Simple> Unidirectional FK (value stored in key)

	N-1 Relations
	Unidirectional with ForeignKey
	Unidirectional with JoinTable
	Bidirectional

	M-N Relations
	equals() and hashCode()
	Using Set
	Using Ordered Lists
	Using indexed Lists
	Using Map

	Arrays
	Single Column Arrays
	Serialised Arrays
	Arrays persisted into Join Tables
	Arrays persisted using Foreign-Keys
	Simple array stored in join table

	Interfaces
	1-1 Interface Relation
	1-N Interface Relation
	Dynamic Schema Updates

	java.lang.Object
	1-1/N-1 Object Relation
	1-N Object Relation
	Serialised Objects

	Embedded Fields
	Embedding persistable objects (1-1)
	Embedding Nested persistable objects
	Embedding Collection Elements
	Embedding Map Keys/Values

	Serialised Fields
	Serialised Collections
	Serialised Collection Elements
	Serialised Maps
	Serialised Map Keys/Values
	Serialised persistable Fields
	Serialised Reference (Interface/Object) Fields
	Serialised Field to Local File

	Schema
	Tables and Column names
	Column names for datastore-identity
	Column names for application-identity
	Column nullability and default values
	Column types
	Columns with no field in the class
	Position of column in a table
	RDBMS : Views
	RDBMS : Datastore Types
	Secondary Tables
	Constraints
	Datastore Identifiers


