
JDO XML MetaData Reference (v5.0)

Table of Contents
Metadata for package tag . 6

Metadata for class tag . 7

Metadata for datastore-identity tag . 8

Metadata for primary-key tag . 10

Metadata for inheritance tag . 11

Metadata for discriminator tag . 12

Metadata for version tag . 13

Metadata for query tag . 14

Metadata for field tag . 15

Metadata for property tag . 20

Metadata for fetch-group tag . 25

Metadata for embedded tag . 26

Metadata for key tag . 27

Metadata for value tag . 28

Metadata for order tag . 29

Metadata for index tag . 30

Metadata for foreign-key tag . 31

Metadata for unique tag . 32

Metadata for column tag . 33

Metadata for join tag . 35

Metadata for element tag . 36

Metadata for collection tag . 37

Metadata for map tag . 38

Metadata for array tag . 40

Metadata for sequence tag. 41

Metadata for fetch-plan tag . 43

Metadata for class extension tag . 44

Metadata for extension tag . 45

JDO has always accepted Metadata in XML format. As described in the the
Mapping Guide this has to be contained in files with particular filenames in
particular locations (relative to the name of the class), and that this metadata is
discovered at runtime. You can provide JDO XML metadata, or alternatively ORM
XML metadata, but with virtually identical format (the only difference being the
top level element being jdo in the former case and orm in the latter case).

This page defines the format of the XML Metadata and can be used for either the
JDO XML metadata or the ORM XML metadata.

Here is an example header for package.jdo files with JDO XSD specification

<?xml version="1.0" encoding="UTF-8" ?>
<jdo xmlns="http://xmlns.jcp.org/xml/ns/jdo/jdo"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jdo/jdo
http://xmlns.jcp.org/xml/ns/jdo/jdo_3_1.xsd" version="3.1">
 ...
</jdo>

Here is an example header for package.orm files with ORM XSD specification

<?xml version="1.0" encoding="UTF-8" ?>
<orm xmlns="http://xmlns.jcp.org/xml/ns/jdo/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jdo/orm
http://xmlns.jcp.org/xml/ns/jdo/orm_3_0.xsd" version="3.0">
 ...
</orm>

JDO expects the XML metadata to be specified in a file or files in particular
locations in the CLASSPATH. For example, if you have a class
com.mycompany.sample.MyExample, JDO will look for any of the following
resources until it finds one (in the order stated) :-

META-INF/package.jdo
WEB-INF/package.jdo
package.jdo
com/package.jdo
com/mycompany/package.jdo
com/mycompany/sample/package.jdo
com/mycompany/sample/MyExample.jdo

1

mapping.html
mapping.html
http://xmlns.jcp.org/xml/ns/jdo/jdo_3_0.xsd
http://xmlns.jcp.org/xml/ns/jdo/orm_3_0.xsd

In addition to the above, you can split your metadata definitions between JDO
XML MetaData files. For example if you have the following classes

com/mycompany/A.java
com/mycompany/B.java
com/mycompany/C.java
com/mycompany/app1/D.java
com/mycompany/app1/E.java

You could define the metadata for these 5 classes in many ways — for example
put all class definitions in com/mycompany/package.jdo, or put the definitions
for D and E in com/mycompany/app1/package.jdo and the definitions for A, B,
C in com/mycompany/package.jdo, or have some in their class named
MetaData files e.g com/mycompany/app1/A.jdo, or a mixture of the above.
DataNucleus will always search for the metadata file containing the class
definition for the class that it requires.

As well as JDO XML metadata, you can (also) use ORM XML metadata to override
particular datastore-specific things like table and column names. JDO expects
any ORM XML metadata to be specified in a file or files in particular locations in
the CLASSPATH. These filenames depend on the javax.jdo.option.mapping
persistence property. For example, if you have a class
com.mycompany.sample.MyExample, and the persistence property is set to
"mysql" then JDO will look for any of the following resources until it finds one
(in the order stated) :-

META-INF/package-mysql.orm
WEB-INF/package-mysql.orm
package-mysql.orm
com/package-mysql.orm
com/mycompany/package-mysql.orm
com/mycompany/sample/package-mysql.orm
com/mycompany/sample/MyExample-mysql.orm

If your application doesn’t make use of ORM metadata then you could turn off
the searches for ORM Metadata files when a class is loaded up. You do this with
the persistence property datanucleus.metadata.supportORM setting it to false.

2

By default any XML Metadata (JDO or ORM) will be validated for accuracy when
loading it. Obviously XML is defined by a DTD or XSD schema and so should
follow that. You can turn off such validations by setting the persistence property
datanucleus.metadata.xml.validate to false when creating your PMF. Note
that this only turns off the XML strictness validation, and not the checks on
inconsistency of specification of relations etc.

What follows provides a reference guide to XML MetaData elements for what
goes in an XML metadata file. Refer to the relevant XSD for precise details.

• jdo

• package

• class

• datastore-identity

• column

• extension

• primary-key

• column

• inheritance

• discriminator column

• join column

• version

• column

• extension

• join

• column

• foreign-key

• column

• field

• property

• index

3

#package
#class
#datastore-identity
#column
#datastoreidentityextension
#primary-key
#column
#inheritance
#discriminator
#column
#join
#column
#version
#column
#versionextension
#join
#column
#foreignkey
#column
#field
#property
#index

• column

• field

• property

• unique

• column

• field

• property

• field

• collection extension

• map extension

• array

• join primary-key index column

• embedded field * column

• element column

• key column

• value column

• order column extension

• column extension

• foreign-key column

• index column

• unique column

• extension

• property

• collection extension

• map extension

• array

• join primary-key index column

• embedded field * column

• element column

4

#column
#field
#property
#unique
#column
#field
#property
#field
#collection
#collectionextension
#map
#mapextension
#array
#join
#primary-key
#index
#column
#embedded
#field
#column
#element
#column
#key
#column
#value
#column
#order
#column
#orderextension
#column
#columnextension
#foreignkey
#column
#index
#column
#unique
#column
#fieldextension
#property
#collection
#collectionextension
#map
#mapextension
#array
#join
#primary-key
#index
#column
#embedded
#field
#column
#element
#column

• key column

• value column

• order column

• column extension

• foreign-key column

• index column

• unique column

• extension

• fetch-group

• field

• query

• sequence

• extension

• fetch-plan

• extension

• extension

5

#key
#column
#value
#column
#order
#column
#column
#columnextension
#foreignkey
#column
#index
#column
#unique
#column
#propertyextension
#fetch-group
#field
#query
#sequence
#sequenceextension
#fetch-plan
#classextension
#extension

Metadata for package tag
These are attributes within the <package> tag (jdo/package). This is used to denote a package, and
all of the <class> elements that follow are in this Java package.

Attribute Description Values

name Name of the java package

catalog Name of the catalog in which to persist the classes in this
package. See also the property name
"javax.jdo.mapping.Catalog" in the PMF Guide.

schema Name of the schema in which to persist the classes in this
package. See also the property name
"javax.jdo.mapping.Schema" in the PMF Guide.

6

persistence.html#pmf
persistence.html#pmf

Metadata for class tag
These are attributes within the <class> tag (jdo/package/class). This is used to define the persistence
definition for this class.

Attribute Description Values

name Name of the class to persist

identity-type The identity type, specifying whether they are uniquely
provided by the JDO implementation (datastore identity),
accessible fields in the object (application identity), or not
at all (nondurable identity). DataNucleus only supports
nondurable identity for SQL views.

datastore,
application,
nondurable

objectid-class The class name of the primary key. When using
application identity.

requires-extent Whether the JDO implementation must provide an Extent
for this class.

true, false

detachable Whether the class is detachable from the persistence
graph.

true, false

embedded-only Whether this class should only be stored embedded in the
tables for other classes.

true, false

persistence-
modifier

What type of persistability type this class exhibits. Please
refer to JDO Class Types.

persistence-
capable,
persistence-aware,
non-persistent

catalog Name of the catalog in which to persist the class. See also
the property name "javax.jdo.mapping.Catalog" in the PMF
Guide.

schema Name of the schema in which to persist the class. See also
the property name "javax.jdo.mapping.Schema" in the
PMF Guide.

table Name of the table/view in which to persist the class. See
also the property name "datanucleus.identifier.case" in the
Persistence Properties Guide.

cacheable Whether the class can be cached in a Level 2 cache. From
JDO2.2

true, false

serializeRead Whether to default to locking objects of this type when
reading them.

true, false

7

http://db.apache.org/jdo/class_types.html
persistence.html#pmf
persistence.html#pmf
persistence.html#pmf
persistence.html#pmf_properties

Metadata for datastore-identity tag
These are attributes within the <datastore-identity> tag (jdo/package/class/datastore-identity). This
is used when the <class> to which this pertains uses datastore identity. It is used to define the
precise definition of datastore identity to be used. This element can contain column sub-elements
allowing definition of the column details where required - these are optional.

Attribute Description Values

strategy Strategy for datastore identity generation for this class.
native allows DataNucleus to choose the most suitable for
the datastore.
 sequence will use a sequence (specified
by the attribute sequence) - if supported by the
datastore.
 increment will use the id values in the
datastore to decide the next id.
 uuid-string will use a
UUID string generator (16-characters).
 uuid-hex will
use a UUID string generator (32-characters).
 identity
will use a datastore inbuilt auto-incrementing types.

auid is a DataNucleus extension, that is an almost
universal id generator (best possible derivate of a DCE
UUID).
 max is a DataNucleus extension, that uses
"select max(column)+1 from table" for the identity.

timestamp is a DataNucleus extension, providing the
current timestamp.
 timestamp-value is a DataNucleus
extension, providing the current timestamp millisecs.

[other values] to utilise user-supplied DataNucleus value
generator plugins.

native, sequence,
increment,
identity, uuid-
string, uuid-hex,
auid, max,
timestamp,
timestamp-value, _
[other values]_

sequence Name of the sequence to use to generate identity values,
when using a strategy of sequence. Please see also the
class extension tags for controlling the sequence.

column Name of the column used for the datastore identity for this
class.

These are attributes within the <extension> tag (jdo/package/class/datastore-identity/extension).
These are for controlling the generation of ids when in datastore identity mode.

Attribute Description Values

sequence-table-
basis

This defines the basis on which to generate unique
identities when using the TableValueGenerator (used by
the "increment" strategy, and sometimes by "native"). You
can either define identities unique against the base table
name, or against the base class name (in an inheritance
tree). Used when the strategy is set to native or increment

class, table

sequence-catalog-
name

The catalog used to store sequences for use by value
generators. See Value Generation. Default catalog for the
datastore will be used if not specified.

8

../extensions/extensions.html#value_generator
../extensions/extensions.html#value_generator
mapping.html#value_generation

Attribute Description Values

sequence-schema-
name

The schema used to store sequences for use by value
generators. See Value Generation. Default schema for the
datastore will be used if not specified.

sequence-table-
name

The table used to store sequences for use by value
generators. See Value Generation.

SEQUENCE_TABL
E

sequence-name-
column-name

The column name in the sequence-table used to store the
name of the sequence for use by value generators. See
Value Generation.

SEQUENCE_NAM
E

sequence-nextval-
column-name

The column name in the sequence-table used to store the
next value in the sequence for use by value generators.
See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use by value generators. Keys
lower than this will not be generated. See Value
Generation.

key-max-value The maximum key value for use by value generators. Keys
higher than this will not be generated. See Value
Generation.

key-initial-value The starting value for use by value generators. Keys will
start from this value when being generated. See Value
Generation.

key-cache-size The cache size for keys for use by value generators. The
cache of keys will be constrained by this value. See Value
Generation.

key-database-
cache-size

The database cache size for keys for use by value
generators. The cache of keys will be constrained by this
value. See Value Generation.

9

mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation

Metadata for primary-key tag
These are attributes within the <primary-key> tag (jdo/package/class/primary-key or
class/field/join/primary-key). It is used to specify the name of the primary key constraint in the
datastore during the schema generation process. When used under <join> it specifies that the join
table has a primary-key.

Attribute Description Values

name Name of the primary key constraint.

column Name of the column to use for the primary key

10

Metadata for inheritance tag
These are attributes within the <inheritance> tag (jdo/package/class/inheritance). It is used when
this class is part of an inheritance tree, and to denote how the class is stored in the datastore since
there are several ways (strategies) in which it can be stored.

Attribute Description Values

strategy Strategy for inheritance of this class. Please refer to the
Inheritance Guide.

new-table,
subclass-table,
superclass-table,
complete-table

11

mapping.html#inheritance

Metadata for discriminator tag
These are attributes within the <discriminator> tag (jdo/package/class/inheritance/discriminator).
This is used to define a discriminator column that is used when this class is stored in the same table
as another class in the same inheritance tree. The discriminator column will contain a value for
objects of this class, and different values for objects of other classes in the inheritance tree.

Attribute Description Values

strategy Strategy for the discrimination column value-map, class-
name, none

value Value for the discrimination column

column Name for the discrimination column

indexed Whether the discriminator column should be indexed.
This is to be specified when defining index information

true, false, unique

12

mapping.html#schema_constraints

Metadata for version tag
These are attributes within the <version> tag (jdo/package/class/version). This is used to define
whether and how this class is handled with respect to optimistic transactions.

Attribute Description Values

strategy Strategy for versioning of this class. The "version-number"
mode uses an incremental numbered value, and the "date-
time" mode uses a java.sql.Timestamp value. state-image
isn’t currently supported.

state-image, date-
time, version-
number

column Name of the column in the datastore to store this field

indexed Whether the version column should be indexed. This is to
be specified when defining index information

true, false, unique

These are attributes within the <extension> tag (jdo/package/class/version/extension).

Attribute Description Values

field-name This extension allows you to define a field that will be
used to contain the version of the object. It is populated by
DataNucleus at persist. See JDO Versioning

13

mapping.html#schema_constraints
mapping.html#versioning

Metadata for query tag
These are attributes within the <query> tag (jdo/package/class/query). This element is used to
define any "named queries" that are to be available for this class. This element contains the query
single-string form as its content.

Attribute Description Values

name Name of the query. This name is mandatory and is used in
calls to pm.newNamedQuery(). Has to be unique for this
class.

language Query language to use. Some datastores offer other
languages

JDOQL, SQL, JPQL

unique Whether the query is to return a unique result (only for
SQL queries).

true, false

result-class Class name of any result class (only for SQL queries).

14

Metadata for field tag
These are attributes within the <field> tag (jdo/package/class/field). This is used to define the
persistence behaviour of the fields of the class to which it pertains. Certain types of fields are, by
default, persisted. This element can be used to change the default behaviour and maybe not persist
a field, or to persist something that normally isn’t persisted. It is used, in addition, to define more
details about how the field is persisted in the datastore.

Attribute Description Values

name Name of the field.

persistence-
modifier

The persistence-modifier specifies how JDO manage each
field in your persistent class. There are three options:
persistent, transactional and none. persistent means that
your field will managed by JDO and stored in the database
on transaction commit. transactional means that your
field will managed by JDO but not stored in the database;
transactional fields values will be saved by JDO when you
start your transaction and restored when you roll back
your transaction. none means that your field will not be
managed by JDO.

persistent,
transactional,
none

primary-key Whether the field is part of any primary key (if using
application identity).

true, false

null-value How to treat null values of persistent fields during storage.
Valid options are "exception", "default", "none" (where
"none" is the default).

exception, default,
none

default-fetch-
group

Whether this field is part of the default fetch group for the
class. Defaults to true for non-key fields of primitive types,
java.util.Date, java.lang., java.math., etc.

true, false

embedded Whether this field should be stored, if possible, as part of
the object instead as its own object in the datastore. This
defaults to true for primitive types, java.util.Date,
java.lang., java.math. etc and false for persistable,
reference (Object, Interface) and container types.

true, false

serialized Whether this field should be stored serialised into a single
column of the table of the containing object.

true, false

dependent Whether the field should be used to check for dependent
objects, and to delete them when this object is deleted. In
other words cascade delete capable.

true, false

mapped-by The name of the field at the other end of a relationship.
Used by 1-1, 1-N, M-N to mark a relation as bidirectional.

15

Attribute Description Values

value-strategy The strategy for populating values to this field. Is typically
used for generating primary key values. See the
definitions under "datastore-identity".

native, sequence,
increment,
identity, uuid-
string, uuid-hex,
auid, max,
timestamp,
timestamp-value,
[other values]

sequence Name of the sequence to use to generate values, when
using a strategy of sequence. Please see also the class
extension tags for controlling the sequence.

recursion-depth The depth that will be recursed when this field is self-
referencing. Should be used alongside
FetchPlan.setMaxFetchDepth() to control the objects
fetched.

-1, 1, 2, … (integer)

field-type Used to specify a more restrictive type than the field
definition in the class. This might be required in order to
map the field to the datastore. To be portable, specify the
name of a single type that is itself able to be mapped to the
datastore (e.g. a field of type Object can specify field-
type="Integer").

indexed Whether the column(s) for this field should be indexed.
This is to be specified when defining index information

true, false, unique

table Table name to use for any join table overriding the default
name provided by DataNucleus. This is used either for 1-N
relationships with a join table or for Secondary Tables. See
also the property name "datanucleus.identifier.case" in the
PMF Properties Guide.

column Column name to use for this field (alternative to specifying
column sub-elements if only one column).

delete-action The foreign-key delete action. This is a shortcut to
specifying foreign key information. Please refer to the
<foreign-key> element for full details.

cascade, restrict,
null, default, none

cacheable Whether the field/property can be cached in a Level 2
cache. From JDO2.2

true, false

load-fetch-group Name of a fetch group to activate when a load of this field
is initiated (due to it being currently unloaded). Not used
for getObjectById, queries, extents etc. Better to use "fetch-
group" and define your groups

converter Class name of a converter class (AttributeConverter) to use
for this field.

use-default-
conversion

Whether we should just use any default conversion
(defined via persistent properties)

true, false

16

mapping.html#value_generation
mapping.html#schema_constraints
mapping.html#one_many_relation_join
mapping.html#one_many_relation_join
mapping.html#secondary_tables
persistence.html#pmf_properties
mapping.html#schema_constraints

These are attributes within the <extension> tag (jdo/package/class/field/extension).

Attribute Description Values

cascade-persist JDO defines that when an object is persisted then all fields
will also be persisted using "persistence-by-reachability".
This extension allows you to turn off the persistence of a
field relation.

true, false

cascade-update JDO defines that when an object is updated then all fields
containing persistable objects will also be updated using
"persistence-by-reachability". This extension allows you to
turn off the update of a field relation.

true, false

cascade-refresh When calling PersistenceManager.refresh() only fetch plan
fields of the passed object will be refreshed. Setting this to
true will refresh the fields of related PC objects in this field

true, false

allow-nulls When the field is a collection by default it will not be
allowed to have nulls present but you can allow them by
setting this DataNucleus extension tag

true, false

insertable Whether this field should be supplied when inserting into
the datastore.

true, false

updateable Whether this field should be supplied when updating the
datastore.

true, false

implementation-
classes

Used to define the possible classes implementing this
interface/Object field. This is used to limit the possible
tables that this is a foreign key to (when this field is
specified as an interface/Object in the class). Value should
be comma-separated list of fully-qualified class names

key-
implementation-
classes

Used to define the possible classes implementing this
interface/Object key. This is used to limit the possible
tables that this is a foreign key to (when this key is
specified as an interface/Object). Value should be comma-
separated list of fully-qualified class names

value-
implementation-
classes

Used to define the possible classes implementing this
interface/Object value. This is used to limit the possible
tables that this is a foreign key to (when this value is
specified as an interface/Object). Value should be comma-
separated list of fully-qualified class names

strategy-when-
notnull

This is to be used in conjunction with the "value-strategy"
attribute. Default JDO2 behaviour when you have a "value-
strategy" defined for a field is to always create a strategy
value for that field regardless of whether you have set the
value of the field yourself. This extension allows you to
only apply the strategy if the field is null at persistence.
This extension has no effect on primitive field types
(which can’t be null) and the value-strategy will always be
applied to such fields.

true, false

17

Attribute Description Values

relation-
discriminator-
column

Name of a column to use for discrimination of the relation
used by objects stored. This is defined when, for example,
a join table is shared by multiple relations and the objects
placed in the join table need discriminating for which
relation they are for

RELATION_DISCR
IM

relation-
discriminator-pk

Whether the column added for the discrimination of
relations is to be part of the PK when using a join table.

true, false

relation-
discriminator-
value

Value to use in the relation discriminator column for
objects of this fields relation. This is defined when, for
example, a join table is shared by multiple relations and
the objects placed in the join table need discriminating for
which relation they are for.

Fully-qualified
class name

select-function Permits to use a function when fetching contents from the
database. A ? (question mark) is mandatory to have and
will be replaced by the column name when generating the
SQL statement. For example to specify a value of UPPER(?)
will convert the field value to upper case on a datastore
that supports that UPPER function.

insert-function Permits to use a function when inserting into the database.
A ? (question mark) is optional and will be replaced by the
column name when generating the SQL statement. For
example to specify a value of TRIM(?) will trim the field
value on a datastore that supports that TRIM function.

update-function Permits to use a function when updating into the database.
A ? (question mark) is optional and will be replaced by the
column name when generating the SQL statement. For
example to specify a value of FUNC(?) will perform "FUNC"
on the field value on a datastore that supports that FUNC
function.

sequence-table-
basis

This defines the basis on which to generate unique
identities when using the TableValueGenerator (used by
the "increment" strategy, and sometimes by "native"). You
can either define identities unique against the base table
name, or against the base class name (in an inheritance
tree). Used when the strategy is set to native or increment

class, table

sequence-catalog-
name

The catalog used to store sequences for use by value
generators. See Value Generation. Default catalog for the
datastore will be used if not specified.

sequence-schema-
name

The schema used to store sequences for use by value
generators. See Value Generation. Default schema for the
datastore will be used if not specified.

sequence-table-
name

The table used to store sequences for use by value
generators. See Value Generation.

SEQUENCE_TABL
E

18

mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation

Attribute Description Values

sequence-name-
column-name

The column name in the sequence-table used to store the
name of the sequence for use by value generators. See
Value Generation.

SEQUENCE_NAM
E

sequence-nextval-
column-name

The column name in the sequence-table used to store the
next value in the sequence for use by value generators.
See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use by value generators. Keys
lower than this will not be generated. See Value
Generation.

key-max-value The maximum key value for use by value generators. Keys
higher than this will not be generated. See Value
Generation.

key-initial-value The starting value for use by value generators. Keys will
start from this value when being generated. See Value
Generation.

key-cache-size The cache size for keys for use by value generators. The
cache of keys will be constrained by this value. See Value
Generation.

key-database-
cache-size

The database cache size for keys for use by value
generators. The cache of keys will be constrained by this
value. See Value Generation.

mapping-class Specifies the mapping class to be used for mapping this
field. This is only used where the user wants to override
the default DataNucleus mapping class and provide their
own mapping class for this field.

Fully-qualified
class name

19

mapping.html#value_generation
mapping.html#value_generation.html
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation

Metadata for property tag
These are attributes within the <property> tag (jdo/package/class/property). This is used to define
the persistence behaviour of the Java Bean properties of the class to which it pertains. This element
can be used to change the default behaviour and maybe not persist a property, or to persist
something that normally isn’t persisted. It is used, in addition, to define more details about how the
property is persisted in the datastore.

Attribute Description Values

name Name of the property. The "name" of a property is
obtained by taking the getXXX, setXXX method names and
using the XXX and making the first letter lowercase.

persistence-
modifier

The persistence-modifier specifies how to manage each
property in your persistent class. There are three options:
persistent, transactional and none. persistent means that
your field will be managed and stored in the database on
transaction commit. transactional means that your field
will be managed but not stored in the database;
transactional fields values will be saved by JDO when you
start your transaction and restored when you roll back
your transaction. none means that your field will not be
managed.

persistent,
transactional,
none

primary-key Whether the property is part of any primary key (if using
application identity).

true, false

null-value How to treat null values of persistent properties during
storage.

exception, default,
none

default-fetch-
group

Whether this property is part of the default fetch group for
the class. Defaults to true for non-key fields of primitive
types, java.util.Date, java.lang., java.math., etc.

true, false

embedded Whether this property should be stored, if possible, as part
of the object instead as its own object in the datastore. This
defaults to true for primitive types, java.util.Date,
java.lang., java.math. etc and false for persistable,
reference (Object, Interface) and container types.

true, false

serialized Whether this property should be stored serialised into a
single column of the table of the containing object.

true, false

dependent Whether the property should be used to check for
dependent objects, and to delete them when this object is
deleted. In other words cascade delete capable.

true, false

mapped-by The name of the property at the other end of a
relationship. Used by 1-1, 1-N, M-N to mark a relation as
bidirectional.

20

Attribute Description Values

value-strategy The strategy for populating values to this property. Is
typically used for generating primary key values. See the
definitions under "datastore-identity".

native, sequence,
increment,
identity, uuid-
string, uuid-hex,
auid, max,
timestamp,
timestamp-value,
[other values]

sequence Name of the sequence to use to generate values, when
using a strategy of sequence. Please see also the class
extension tags for controlling the sequence.

recursion-depth The depth that will be recursed when this property is self-
referencing. Should be used alongside
FetchPlan.setMaxFetchDepth() to control the objects
fetched.

-1, 1, 2, … (integer)

field-type Used to specify a more restrictive type than the property
definition in the class. This might be required in order to
map the field to the datastore. To be portable, specify the
name of a single type that is itself able to be mapped to the
datastore (e.g. a field of type Object can specify field-
type="Integer").

indexed Whether the column(s) for this property should be
indexed. This is to be specified when defining index
information

true, false, unique

table Table name to use for any join table overriding the default
name provided by DataNucleus. This is used either for 1-N
relationships with a join table or for Secondary Tables. See
also the property name "datanucleus.identifier.case" in the
Persistence Properties Guide.

column Column name to use for this property (alternative to
specifying column sub-elements if only one column).

delete-action The foreign-key delete action. This is a shortcut to
specifying foreign key information. Please refer to the
<foreign-key> element for full details.

cascade, restrict,
null, default, none

cacheable Whether the field/property can be cached in a Level 2
cache. From JDO2.2

true, false

load-fetch-group Name of a fetch group to activate when a load of this field
is initiated (due to it being currently unloaded). Not used
for getObjectById, queries, extents etc. Better to use "fetch-
group" and define your groups

These are attributes within the <extension> tag (jdo/package/class/property/extension).

21

mapping.html#value_generation
mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#one_many_relation
mapping.html#one_many_relation
mapping.html#secondary_tables
persistence.html#persistence_properties.html
mapping.html#schema_constraints

Attribute Description Values

cascade-persist JDO defines that when an object is persisted then all fields
will also be persisted using "persistence-by-reachability".
This extension allows you to turn off the persistence of a
field relation.

true, false

cascade-update JDO defines that when an object is updated then all fields
containing persistable objects will also be updated using
"persistence-by-reachability". This extension allows you to
turn off the update of a field relation.

true, false

cascade-refresh When calling PersistenceManager.refresh() only fetch plan
fields of the passed object will be refreshed. Setting this to
true will refresh the fields of related PC objects in this field

true, false

allow-nulls When the field is a collection by default it will not be
allowed to have nulls present but you can allow them by
setting this DataNucleus extension tag

true, false

insertable Whether this field should be supplied when inserting into
the datastore.

true, false

updateable Whether this field should be supplied when updating the
datastore.

true, false

implementation-
classes

Used to define the possible classes implementing this
interface/Object field. This is used to limit the possible
tables that this is a foreign key to (when this field is
specified as an interface/Object in the class). Value should
be comma-separated list of fully-qualified class names

key-
implementation-
classes

Used to define the possible classes implementing this
interface/Object key. This is used to limit the possible
tables that this is a foreign key to (when this key is
specified as an interface/Object). Value should be comma-
separated list of fully-qualified class names

value-
implementation-
classes

Used to define the possible classes implementing this
interface/Object value. This is used to limit the possible
tables that this is a foreign key to (when this value is
specified as an interface/Object). Value should be comma-
separated list of fully-qualified class names

strategy-when-
notnull

This is to be used in conjunction with the "value-strategy"
attribute. Default JDO2 behaviour when you have a "value-
strategy" defined for a field is to always create a strategy
value for that field regardless of whether you have set the
value of the field yourself. This extension allows you to
only apply the strategy if the field is null at persistence.
This extension has no effect on primitive field types
(which can’t be null) and the value-strategy will always be
applied to such fields.

true, false

22

Attribute Description Values

relation-
discriminator-
column

Name of a column to use for discrimination of the relation
used by objects stored. This is defined when, for example,
a join table is shared by multiple relations and the objects
placed in the join table need discriminating for which
relation they are for

RELATION_DISCR
IM

relation-
discriminator-pk

Whether the column added for the discrimination of
relations is to be part of the PK when using a join table.

true, false

relation-
discriminator-
value

Value to use in the relation discriminator column for
objects of this fields relation. This is defined when, for
example, a join table is shared by multiple relations and
the objects placed in the join table need discriminating for
which relation they are for.

Fully-qualified
class name

select-function Permits to use a function when fetching contents from the
database. A ? (question mark) is mandatory to have and
will be replaced by the column name when generating the
SQL statement. For example to specify a value of UPPER(?)
will convert to upper case the field value on a datastore
that supports that UPPER function.

insert-function Permits to use a function when inserting into the database.
A ? (question mark) is optional and will be replaced by the
column name when generating the SQL statement. For
example to specify a value of TRIM(?) will trim the field
value on a datastore that supports that TRIM function.

update-function Permits to use a function when updating into the database.
A ? (question mark) is optional and will be replaced by the
column name when generating the SQL statement. For
example to specify a value of FUNC(?) will perform FUNC()
on the field value on a datastore that supports that FUNC
function.

sequence-table-
basis

This defines the basis on which to generate unique
identities when using the TableValueGenerator (used by
the "increment" strategy, and sometimes by "native"). You
can either define identities unique against the base table
name, or against the base class name (in an inheritance
tree). Used when the strategy is set to native or increment

class, table

sequence-catalog-
name

The catalog used to store sequences for use by value
generators. See Value Generation. Default catalog for the
datastore will be used if not specified.

sequence-schema-
name

The schema used to store sequences for use by value
generators. See Value Generation. Default schema for the
datastore will be used if not specified.

sequence-table-
name

The table used to store sequences for use by value
generators. See Value Generation.

SEQUENCE_TABL
E

23

mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation

Attribute Description Values

sequence-name-
column-name

The column name in the sequence-table used to store the
name of the sequence for use by value generators. See
Value Generation.

SEQUENCE_NAM
E

sequence-nextval-
column-name

The column name in the sequence-table used to store the
next value in the sequence for use by value generators.
See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use by value generators. Keys
lower than this will not be generated. See Value
Generation.

key-max-value The maximum key value for use by value generators. Keys
higher than this will not be generated. See Value
Generation.

key-initial-value The starting value for use by value generators. Keys will
start from this value when being generated. See Value
Generation.

key-cache-size The cache size for keys for use by value generators. The
cache of keys will be constrained by this value. See Value
Generation.

key-database-
cache-size

The database cache size for keys for use by value
generators. The cache of keys will be constrained by this
value. See Value Generation.

mapping-class Specifies the mapping class to be used for mapping this
field. This is only used where the user wants to override
the default DataNucleus mapping class and provide their
own mapping class for this field.

Fully-qualified
class name

24

mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation

Metadata for fetch-group tag
These are attributes within the <fetch-group> tag (jdo/package/class/fetch-group). This element is
used to define fetch groups that are utilised at runtime, and are of particular use with
attach/detach. This element can contain fetch-group sub-elements allowing definition of
hierarchical groups. It can also contain field elements, defining the fields that are part of this fetch-
group.

Attribute Description Values

name Name of the fetch group. Used with the fetch plan of the
PersistenceManager.

post-load Whether to call jdoPostLoad when the fetch group is
invoked.

true, false

25

Metadata for embedded tag
These are attributes within the <embedded> tag (jdo/package/class/embedded). It is used when this
field is a persistable and is embedded into the same table as the class.

Attribute Description Values

owner-field Name of the field in the embedded persistable that is the
link back to the owning object (if any).

null-indicator-
column

Name of the column to be used for detacting if the
embedded object is null.

null-indicator-
value

Value of the null-indicator-column that signifies that the
embedded object is null.

26

Metadata for key tag
These are attributes within the <key> tag (jdo/package/class/field/key). This element is used to
define details for the persistence of a Map.

Attribute Description Values

mapped-by When the map is formed by a foreign-key, the key can be a
field in a value persistable class. This attribute defines
which field in the value class is used as the key

column Name of the column (if only one)

delete-action Action to be performed when the owner object is deleted.
This is to be specified when defining foreign key
information

cascade, restrict,
null, default, none

indexed Whether the key column should be indexed. This is to be
specified when defining index information

true, false, unique

unique Whether the key column should be unique. This is to be
specified when defining unique key information

true, false

converter Class name of a converter class (AttributeConverter) to use
for this key.

use-default-
conversion

Whether we should just use any default conversion
(defined via persistent properties)

true, false

27

mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints

Metadata for value tag
These are attributes within the <value> tag (jdo/package/class/field/value). This element is used to
define details for the persistence of a Map.

Attribute Description Values

mapped-by When the map is formed by a foreign-key, the value can be
a field in a key persistable class. This attribute defines
which field in the key class is used as the value.

column Name of the column (if only one)

delete-action Action to be performed when the owner object is deleted.
This is to be specified when defining foreign key
information

cascade, restrict,
null, default, none

indexed Whether the value column should be indexed. This is to be
specified when defining index information

true, false, unique

unique Whether the value column should be unique. This is to be
specified when defining unique key information

true, false

converter Class name of a converter class (AttributeConverter) to use
for this key.

use-default-
conversion

Whether we should just use any default conversion
(defined via persistent properties)

true, false

28

mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints

Metadata for order tag
These are attributes within the <order> tag (jdo/package/class/field/order). This is used to define the
column details for the ordering column in a List.

Attribute Description Values

mapped-by When a List is formed by a foreign-key, the ordering can
be a field in the element persistable class. This attribute
defines which field in the element class is used as the
ordering. The field must be of type int, Integer, long, Long.
DataNucleus will write the index positions to this field
(starting at 0 for the first item in the List)

column Name of the column to use for ordering.

These are attributes within the <extension> tag (jdo/package/class/field/order/extension).

Attribute Description Values

list-ordering Used to make the list be an "ordered list" where it has no
index column and instead will order the elements by the
specified expression upon retrieval. The ordering
expression takes names and ASC/DESC and can be a
composite

{orderfield [ASC

29

Metadata for index tag
These are attributes within the <index> tag (jdo/package/class/field/index). This element is used
where a user wishes to add specific indexes to the datastore to provide more efficient access to
particular fields.

Attribute Description Values

name Name of the index in the datastore

unique Whether the index is unique true, false

column Name of the column to use (alternative to specifying it as a
sub-element).

These are attributes within the <extension> tag (jdo/package/class/field/index/extension).

Attribute Description Values

extended-setting Additional settings to the index. This extension is used to
set database proprietary settings.

30

Metadata for foreign-key tag
These are attributes within the <foreign-key> tag (jdo/package/class/field/foreign-key). This is used
where the user wishes to define the behaviour of the foreign keys added due to the relationships in
the object model. This is to be read in conjunction with foreign-key guide

Attribute Description Values

name Name of the foreign key in the datastore

deferred Whether the constraints are initially deferred. true, false

delete-action Action to be performed when the owner object is deleted. cascade, restrict,
null, default

update-action Action to be performed when the owner object is updated. cascade, restrict,
null, default

31

mapping.html#schema_constraints

Metadata for unique tag
These are attributes within the <unique> tag (jdo/package/class/unique,
jdo/package/class/field/unique). This element is used where a user wishes to add specific unique
constraints to the datastore to provide more control over particular fields.

Attribute Description Values

name Name of the constraint in the datastore

column Name of the column to use (alternative to specifying it as a
sub-element).

32

Metadata for column tag
These are attributes within the <column> tag (*/column). This is used to define the details of a
column in the datastore, and so can be used to match to an existing datastore schema.

Attribute Description Values

name Name of the column in the datastore. See also the property
name "datanucleus.identifier.case" in the PMF Properties
Guide.

length Length of the column in the datastore (for character
types), or the precision of the column in the datastore (for
floating point field types).

positive integer

scale Scale of the column in the datastore (for floating point
field types).

positive integer

jdbc-type JDBC Type to use for this column in the datastore when the
default value is not satisfactory. Please refer to JDBC for
the valid types. Not all of these types are supported for all
RDBMS mappings.

Valid JDBC Type
(CHAR, VARCHAR,
LONGVARCHAR,
NUMERIC,
DECIMAL, BIT,
TINYINT,
SMALLINT,
INTEGER, BIGINT,
REAL, FLOAT,
DOUBLE, BINARY,
VARBINARY,
LONGVARBINARY,
DATE, TIME,
TIMESTAMP,
BLOB, BOOLEAN,
CLOB, DATALINK)

sql-type SQL Type to use for this column in the datastore. This
should not usually be necessary since the specification of
JDBC type together with length/scale will likely define it.

Valid SQL Type
(e.g VARCHAR,
CHAR, NUMERIC
etc)

allows-null Whether the column in the datastore table should allow
nulls or not. The default is "false" for primitives, and "true"
otherwise.

true, false

default-value Default value to use for this column when creating the
table. If you want the default to be NULL, then put this as
"#NULL". This is particularly for cases where you have a
table that stores multiple classes in an inheritance tree
(subclass-table, superclass-table) so when you persist a
superclass object it doesn’t have the subclass fields in its
INSERT and so the datastore uses the default-value settings
that are embodied in the CREATE TABLE statement.

Default value
expression

33

persistence.html#pmf_properties
persistence.html#pmf_properties

Attribute Description Values

target Declares the name of the primary key column for the
referenced table. For columns contained in join elements,
this is the name of the primary key column in the primary
table. For columns contained in field, element, key, value,
or array elements, this is the name of the primary key
column of the primary table of the other side of the
relationship.

target column
name

target-field Declares the name of the primary key field for the
referenced class. For columns contained in join elements,
this is the name of the primary key field in the base class.
For columns contained in field, element, key, value, or
array elements, this is the name of the primary key field of
the base class of the other side of the relationship.

target field name

insert-value Value to use for this column when it has no field in the
class and an object is being inserted. If you want the
inserted value to be NULL, then put this as "#NULL"

Insert value

position Position of the column in the table (0 = first). positive integer

These are attributes within the <extension> tag (*/column/extension).

Attribute Description Values

datastore-
mapping-class

Specifies the datastore mapping class to be used for
mapping this field. This is only used where the user wants
to override the default DataNucleus datastore mapping
class and provide their own mapping class for this field
based on the database data type. This datastore mapping
class must be available for the DataNucleus
PersistenceManagerFactory classpath.

Fully-qualified
class name

enum-check-
constraint

Specifies that a CHECK constraint for this column must be
generated based on the values of a java.lang.Enum type.
e.g. enum Color (RED, GREEN, BLUE) where its name is
persisted a CHECK constraint is defined as CHECK
"COLUMN" IN ('RED', 'GREEN', 'BLUE').

true, false

34

Metadata for join tag
These are attributes within the <join> tag (jdo/package/class/field/join). This element is added when
the field has a mapping to a "join" table (as part of a 1-N relationship). It is also used to specify
overriding of details in an inheritance tree where the primary key columns are shared up the
hierarchy. A further use (when specified under the <class> element) is for specifying the column
details for joining to a Secondary Table.

Attribute Description Values

column Name of the column used to join to the PK of the primary
table (when only one column used). Used in Secondary
Tables.

table Table name used when joining the PK of a FCO class table
to a secondary table. See Secondary Tables.

delete-action Action to be performed when the owner object is deleted.
This is to be specified when defining foreign key
information

cascade, restrict,
null, default, none

indexed Whether the join table owner column should be indexed.
This is to be specified when defining index information

true, false, unique

unique Whether the join table owner column should be unique.
This is to be specified when defining unique key
information

true, false

outer Whether to use an outer join here. This is of particular
relevance to secondary tables

true, false

These are attributes within the <extension> tag (jdo/package/class/field/join/extension). These are
for controlling the join table.

Attribute Description Values

primary-key This parameter defines if the join table will be assigned a
primary key. The default is true since it is considered a
best practice to have primary keys on all tables. This
allows the option of turning it off.

true, false

35

mapping.htm;#secondary_tables
mapping.htm;#secondary_tables
mapping.htm;#secondary_tables
mapping.htm;#secondary_tables
mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints

Metadata for element tag
These are attributes within the <element> tag (jdo/package/class/field/element). This element is
added when the field has a mapping to a "element" (as part of a 1-N relationship).

Attribute Description Values

mapped-by The name of the field at the other ("N") end of a
relationship when this field is the "1" side of a 1-N
relationship (for FK relationships). This performs the same
function as specifying "mapped-by" on the <field> element.

column Name of the column (alternative to specifying it as a sub-
element).

delete-action Action to be performed when the owner object is deleted.
This is to be specified when defining foreign key
information

cascade, restrict,
null, default, none

indexed Whether the element column should be indexed. This is to
be specified when defining index information

true, false, unique

unique Whether the element column should be unique. This is to
be specified when defining unique key information

true, false

converter Class name of a converter class (AttributeConverter) to use
for this key.

use-default-
conversion

Whether we should just use any default conversion
(defined via persistent properties)

true, false

36

mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints
mapping.html#schema_constraints

Metadata for collection tag
These are attributes within the <collection> tag (jdo/package/class/field/collection). This is used to
define the persistence of a Collection.

Attribute Description Values

element-type The type of element stored in this Collection or array (fully
qualified class). This is not required when the field is an
array. It is also not required when the Collection is defined
using generics.

embedded-
element

Whether the elements of a collection or array-valued
persistent field should be stored embedded or as first-class
objects. It’s a hint for the JDO implementation to store, if
possible, the elements of the collection as part of the it
instead of as their own instances in the datastore. See the
<embedded> element for details on how to define the field
mappings for the embedded element.

true, false

dependent-
element

Whether the elements of the collection are to be
considered dependent on the owner object.

true, false

serialized-element Whether the elements of a collection or array-valued
persistent field should be stored serialised into a single
column of the join table (where used).

true, false

These are attributes within the <extension> tag (jdo/package/class/field/collection/extension).

Attribute Description Values

cache Whether this SCO collection will be cached by DataNucleus
or whether every access of the collection will go through
to the datastore. See also "datanucleus.cache.collections"
in the PMF Properties Guide. This MetaData attribute is
used to override the value used by the
PersistenceManagerFactory

true, false

cache-lazy-loading Whether objects from this SCO collection will be lazy
loaded (loaded when required) or whether they should be
loaded at initialisation. See also
"datanucleus.cache.collections.lazy" in the PMF Properties
Guide. This MetaData attribute is used to override the
value used by the PersistenceManagerFactory

true, false

comparator-name Defines the name of the comparator to use with SortedSet,
TreeSet collections. The specified name is the name of the
comparator class, which must have a default constructor.
This extension is only used by SortedSet, TreeSet fields.

Fully-qualified
class name

37

persistence.html#pmf_properties
persistence.html#pmf_properties
persistence.html#pmf_properties

Metadata for map tag
These are attributes within the <map> tag (jdo/package/class/field/map). This is used to define the
persistence of a Map.

Attribute Description Values

key-type The type of key stored in this Map (fully qualified class).
This is not required when the Map is defined using JDK 1.5
generics.

embedded-key Whether the elements of a Map key field should be stored
embedded or as first-class objects.

true, false

value-type The type of value stored in this Map (fully qualified class).
This is not required when the Map is defined using JDK 1.5
generics.

embedded-value Whether the elements of a Map value field should be
stored embedded or as first-class objects.

true, false

dependent-key Whether the keys of the map are to be considered
dependent on the owner object.

true, false

dependent-value Whether the value of the map are to be considered
dependent on the owner object.

true, false

serialized-key Whether the keys of a map-valued persistent field should
be stored serialised into a single column of the join table
(where used).

true, false

serialized-value Whether the values of a map-valued persistent field
should be stored serialised into a single column of the join
table (where used).

true, false

These are attributes within the <extension> tag (jdo/package/class/field/map/extension).

Attribute Description Values

cache Whether this SCO map will be cached by DataNucleus or
whether every access of the map will go through to the
datastore. See also "datanucleus.cache.collections" in the
PMF Properties Guide. This MetaData attribute is used to
override the value used by the PersistenceManagerFactory

true, false

cache-lazy-loading Whether objects from this SCO map will be lazy loaded
(loaded when required) or whether they should be loaded
at initialisation. See also
"datanucleus.cache.collections.lazy" in the PMF Properties
Guide. This MetaData attribute is used to override the
value used by the PersistenceManagerFactory

true, false

38

persistence.html#pmf_properties
persistence.html#pmf_properties
persistence.html#pmf_properties

Attribute Description Values

comparator-name Defines the name of the comparator to use with
SortedMap, TreeMap maps. The specified name is the
name of the comparator class, which must have a default
constructor. This extension is only used by SortedMap,
TreeMap fields.

Fully-qualified
class name

39

Metadata for array tag
This is used to define the persistence of an array. DataNucleus provides support for many types of
arrays, either serialised into a single column, using a join table, or via a foreign-key (for arrays of
PC objects).

Attribute Description Values

embedded-
element

Whether the array elements should be stored embedded
(default = true for primitives, wrappers etc and false for
persistable objects).

true, false

serialized-element Whether the array elements should be stored serialised
into a single column in the join table.

true, false

dependent-
element

Whether the elements of the array are to be considered
dependent on the owner object.

true, false

40

Metadata for sequence tag
These are attributes within the <sequence> tag. This is used to denote a JDO datastore sequence.

Attribute Description Values

name Symbolic name for the sequence for this package

datastore-
sequence

Name of the sequence in the datastore

factory-class Factory class for creating the sequence. Please refer to the
Sequence guide

strategy Strategy to use for application of this sequence. nontransactional,
contiguous,
noncontiguous

allocation-size Allocation size for the sequence for this package 50

initial-value Initial value for the sequence for this package 1

These are attributes within the <extension> tag (jdo/package/class/sequence/extension). These are
for controlling the datastore sequences created by DataNucleus. Please refer to the documentation
for the value generator being used for applicability

Attribute Description Values

sequence-catalog-
name

The catalog used to store sequences for use by value
generators. See Value Generation. Default catalog for the
datastore will be used if not specified.

sequence-schema-
name

The schema used to store sequences for use by value
generators. See Value Generation. Default schema for the
datastore will be used if not specified.

sequence-table-
name

The table used to store sequences for use by value
generators. See Value Generation.

SEQUENCE_TABL
E

sequence-name-
column-name

The column name in the sequence-table used to store the
name of the sequence for use by value generators. See
Value Generation.

SEQUENCE_NAM
E

sequence-nextval-
column-name

The column name in the sequence-table used to store the
next value in the sequence for use by value generators.
See Value Generation.

NEXT_VAL

key-min-value The minimum key value for use by value generators. Keys
lower than this will not be generated. See Value
Generation.

key-max-value The maximum key value for use by value generators. Keys
higher than this will not be generated. See Value
Generation.

41

mapping.html#sequences
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation

Attribute Description Values

key-initial-value The starting value for use by value generators. Keys will
start from this value when being generated. See Value
Generation.

key-cache-size The cache size for keys for use by value generators. The
cache of keys will be constrained by this value. See Value
Generation.

key-database-
cache-size

The database cache size for keys for use by value
generators. The cache of keys will be constrained by this
value. See Value Generation.

42

mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation
mapping.html#value_generation

Metadata for fetch-plan tag
These are attributes within the <fetch-plan> tag (jdo/fetch-plan). This element is used to define
fetch plans that are utilised at runtime, and are of particular use with queries. This element
contains fetch-group sub-elements.

Attribute Description Values

name Name of the fetch plan.

maxFetchDepth Max depth to fetch with this fetch plan 1

fetchSize Size to fetch with this fetch plan (for use with query result
sets

0

43

Metadata for class extension tag
These are attributes within the <extension> tag (jdo/package/class/extension). These are for
controlling the class definition

Attribute Description Values

requires-table This is for use with a "nondurable" identity case and
specifies whether the class requires a table/view in the
datastore.

true, false

ddl-definition Definition of the TABLE SCHEMA to be used by the class. true, false

ddl-imports Classes imported resolve macro identifiers in the
definition of a RDBMS Table.

mysql-engine-type "Engine Type" to use when creating the table for this class
in MySQL. Refer to the MySQL documentation for ENGINE
type (e.g INNODB, MEMORY, ISAM)

view-definition Definition of the VIEW to be used by the class. Please refer
to the RDBMS Views Guide for details. If your view already
exists, then specify this as " " and have the autoStart flags
set to false.

view-imports Classes imported resolve macro identifiers in the
definition of a RDBMS View. Please refer to the RDBMS
Views Guide for details.

read-only Whether objects of this type are read-only. Setting this to
true will prevent any insert/update/delete of this type

true, false

44

mapping.html#rdbmsviews
mapping.html#rdbmsviews
mapping.html#rdbmsviews

Metadata for extension tag
These are attributes within the <extension> tag. This is used to denote a DataNucleus extension to
JDO.

Attribute Description Values

vendor-name Name of the vendor. For DataNucleus we use the name
"datanucleus" (lowercase).

key Key of the extension property

value Value of the extension property

45

	JDO XML MetaData Reference (v5.0)
	Table of Contents
	Metadata for package tag
	Metadata for class tag
	Metadata for datastore-identity tag
	Metadata for primary-key tag
	Metadata for inheritance tag
	Metadata for discriminator tag
	Metadata for version tag
	Metadata for query tag
	Metadata for field tag
	Metadata for property tag
	Metadata for fetch-group tag
	Metadata for embedded tag
	Metadata for key tag
	Metadata for value tag
	Metadata for order tag
	Metadata for index tag
	Metadata for foreign-key tag
	Metadata for unique tag
	Metadata for column tag
	Metadata for join tag
	Metadata for element tag
	Metadata for collection tag
	Metadata for map tag
	Metadata for array tag
	Metadata for sequence tag
	Metadata for fetch-plan tag
	Metadata for class extension tag
	Metadata for extension tag

