
JPA Enhancement Guide (v5.0)

Table of Contents
Maven . 3

Ant . 5

Manually . 7

Runtime Enhancement . 9

Programmatic API . 10

Enhancement Contract Details . 11

Persistable . 11

Byte-Code Enhancement Myths . 11

Decompilation . 12

DataNucleus requires that all JPA entities implement Persistable and
Detachable. Rather than requiring that a user add this themself, we provide an
enhancer that will modify your compiled classes to implement all required
methods. This is provided in datanucleus-core.jar.

• The use of this interface means that you get transparent persistence, and
your classes always remain your classes; ORM tools that use a mix of
reflection and/or proxies are not totally transparent.

• DataNucleus' use of Persistable provides transparent change tracking. When
any change is made to an object the change creates a notification to
DataNucleus allowing it to be optimally persisted. ORM tools that dont have
access to such change tracking have to use reflection to detect changes. The
performance of this process will break down as soon as you read a large
number of objects, but modify just a handful, with these tools having to
compare all object states for modification at transaction commit time.

• OpenJPA requires a similar bytecode enhancement process also, and
EclipseLink and Hibernate both allow it as an option since they also now see
the benefits of this approach over use of proxies and reflection.

In the DataNucleus bytecode enhancement contract there are 3 categories of
classes. These are Entity, PersistenceAware and normal classes. The Meta-Data
(XML or annotations) defines which classes fit into these categories. To give an
example, we have 3 classes. Class A is to be persisted in the datastore, class B
directly updates the fields of class A but doesn’t need persisting, and class C is
not involved in the persistence process. We would define these classes as follows

@Entity
public class A
{
 String myField;
 ...
}

@org.datanucleus.api.jpa.annotations.PersistenceAware
public class B
{
 ...
}

public class C {...}

So our MetaData is mainly for those classes that are Entity (or

1

http://www.datanucleus.org/javadocs/core/5.0/org/datanucleus/enhancement/Persistable.html
http://www.datanucleus.org/javadocs/core/5.0/org/datanucleus/enhancement/Detachable.html

MappedSuperclass/Embeddable) and are to be persisted to the datastore. For
PersistenceAware classes we simply notate that the class knows about
persistence. We don’t define MetaData for any class that has no knowledge of
persistence.

You can read more about the precise details of the bytecode enhancement
contract later in this section.

The enhancement process is very quick and easy.

You cannot enhance classes that are in a JAR/WAR file. They must
be unpacked, enhanced and then repacked.

If the MetaData is changed in any way during development, the
classes should always be recompiled and re-enhanced afterwards.

How to use the DataNucleus Enhancer depends on what environment you are
using. Below are some typical examples.

• Post-compilation

• Using Maven via the DataNucleus Maven plugin

• Using Ant

• Manual invocation at the command line

• Using the Eclipse DataNucleus plugin

• At runtime

• Runtime Enhancement

• Programmatically via an API

2

enhancer.html#enhancement_contract
tools.html#eclipse

Maven
Maven operates from a series of plugins. There is a DataNucleus plugin for Maven that allows
enhancement of classes. Go to the Download section of the website and download this. Once you
have the Maven plugin, you then need to set any properties for the plugin in your pom.xml file. Some
properties that you may need to change are below

Property Default Description

persistenceUnitNa
me

Name of the persistence-unit to enhance. Mandatory

metadataDirectory ${project.build.out
putDirectory}

Directory to use for enhancement files (classes/mappings).
For example, you could set this to
${project.build.testOutputDirectory} when enhancing
Maven test classes

metadataIncludes /.jdo, /.class Fileset to include for enhancement (if not using
persistence-unit)

metadataExcludes Fileset to exclude for enhancement (if not using
persistence-unit)

log4jConfiguration Config file location for Log4J (if using it)

jdkLogConfigurati
on

Config file location for JDK1.4 logging (if using it)

api JDO API to enhance to (JDO, JPA). Mandatory : Set this to JPA

verbose false Verbose output?

quiet false No output?

targetDirectory Where the enhanced classes are written (default is to
overwrite them)

fork true Whether to fork the enhancer process (e.g if you get a
command line too long with Windows).

generatePK true Generate a PK class (of name {MyClass}_PK) for cases
where there are multiple PK fields yet no PK class is
defined.

generateConstruct
or

true Generate a default constructor if not defined for the class
being enhanced.

detachListener false Whether to enhance classes to make use of a detach
listener for attempts to access an undetached field.

ignoreMetaDataFo
rMissingClasses

false Whether to ignore when we have metadata specified for
classes that aren’t found

You will need to add datanucleus-core.jar and datanucleus-api-jpa.jar into the CLASSPATH (of the
plugin, or your project) for the enhancer to operate. Similarly javax.persistence (but then you
almost certainly will have that in your project CLASSPATH anyway).

3

You then run the Maven DataNucleus plugin, as follows

mvn datanucleus:enhance

This will enhance all classes for the specified persistence-unit. If you want to check the current
status of enhancement you can also type

mvn datanucleus:enhance-check

Or alternatively, you could add the following to your POM

<build>
 ...
 <plugins>
 <plugin>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-maven-plugin</artifactId>
 <version>5.0.2</version>
 <configuration>
 <api>JPA</api>
 <persistenceUnitName>MyUnit</persistenceUnitName>
 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>
 <verbose>true</verbose>
 </configuration>
 <executions>
 <execution>
 <phase>process-classes</phase>
 <goals>
 <goal>enhance</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 ...
</build>

So you then get auto-enhancement after each compile. Please refer to the Maven JPA guide for more
details.

4

tools.html#maven

Ant
Ant provides a powerful framework for performing tasks, and DataNucleus provides an Ant task to
enhance classes. You need to make sure that the datanucleus-core.jar, datanucleus-api-jpa.jar,
log4j.jar (optional), and javax.persistence.jar are in your CLASSPATH. If using JDO metadata then
you will also need javax.jdo.jar and datanucleus-api-jdo.jar in the CLASSPATH. In the
DataNucleus Enhancer Ant task, the following parameters are available

Parameter Description values

destination Optional. Defining a directory where enhanced
classes will be written. If omitted, the original
classes are updated.

api Defines the API to be used when enhancing Set this to JPA

persistenceUnit Defines the "persistence-unit" to enhance.

checkonly Whether to just check the classes for
enhancement status. Will respond for each class
with "ENHANCED" or "NOT ENHANCED". This
will disable the enhancement process and
just perform these checks.

true, false

verbose Whether to have verbose output. true, false

quiet Whether to have no output. true, false

generatePK Whether to generate PK classes as required. true, false

generateConstructor Whether to generate a default constructor as
required.

true, false

if Optional. The name of a property that must be
set in order to the Enhancer Ant Task to execute.

ignoreMetaDataForMis
singClasses

Optional. Whether to ignore when we have
metadata specified for classes that aren’t found

The enhancer task extends the Apache Ant Java task, thus all parameters available to the Java task
are also available to the enhancer task.

So you could define something like the following, setting up the parameter enhancer.classpath,
and log4j.config.file to suit your situation.

5

<target name="enhance" description="DataNucleus enhancement">
 <taskdef name="datanucleusenhancer" classpathref="enhancer.classpath"
classname="org.datanucleus.enhancer.EnhancerTask" />
 <datanucleusenhancer persistenceUnit="MyUnit" failonerror="true" verbose="true">
 <jvmarg line="-Dlog4j.configuration=${log4j.config.file}"/>
 <classpath>
 <path refid="enhancer.classpath"/>
 </classpath>
 </datanucleusenhancer>
</target>

6

Manually
If you are building your application manually and want to enhance your classes you follow the
instructions in this section. You invoke the enhancer as follows

java -cp classpath org.datanucleus.enhancer.DataNucleusEnhancer [options]
 where options can be
 -pu {persistence-unit-name} : Name of a "persistence-unit" to enhance the
classes for
 -d {target-dir-name} : Write the enhanced classes to the specified directory
 -api {api-name} : Name of the API we are enhancing for (JDO, JPA). Set this to
JPA
 -checkonly : Just check the classes for enhancement status
 -v : verbose output
 -q : quiet mode (no output, overrides verbose flag too)
 -generatePK {flag} : generate any PK classes where needed ({flag} should be
true or false - default=true)
 -generateConstructor {flag} : generate default constructor where needed
({flag} should be true or false - default=true)
 -ignoreMetaDataForMissingClasses : ignore classes that have defined metadata
but are missing

 where "mapping-files" and "class-files" are provided when not enhancing a
persistence-unit,
 and give the paths to the mapping files and class-files that define the
classes being enhanced.

 where classpath must contain the following
 `datanucleus-core.jar`
 `datanucleus-api-jpa.jar`
 `javax.persistence.jar`
 `log4j.jar` (optional)
 your classes
 your meta-data files

The input to the enhancer should be the name of the "persistence-unit" to enhance. To give an
example of how you would invoke the enhancer

7

Linux/Unix :
java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-
jpa.jar:lib/javax.persistence.jar:lib/log4j.jar
 -Dlog4j.configuration=file:log4j.properties
 org.datanucleus.enhancer.DataNucleusEnhancer -api JPA -pu MyUnit

Windows :
java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-jpa.jar;lib
\javax.persistence.jar;lib\log4j.jar
 -Dlog4j.configuration=file:log4j.properties
 org.datanucleus.enhancer.DataNucleusEnhancer -api JPA -pu MyUnit

[should all be on same line. Shown like this for clarity]

So you pass in the persistence-unit name as the final argument(s) in the list, and include the
respective JAR’s in the classpath (-cp). The enhancer responds as follows

DataNucleus Enhancer (version 5.0.2) for API "JPA"

DataNucleus Enhancer : Classpath
>> /home/andy/work/myproject//target/classes
>> /home/andy/work/myproject/lib/log4j.jar
>> /home/andy/work/myproject/lib/javax.persistence.jar
>> /home/andy/work/myproject/lib/datanucleus-core.jar
>> /home/andy/work/myproject/lib/datanucleus-api-jpa.jar

ENHANCED (persistable): org.mydomain.mypackage1.Pack
ENHANCED (persistable): org.mydomain.mypackage1.Card
DataNucleus Enhancer completed with success for 2 classes. Timings : input=422 ms,
enhance=490 ms, total=912 ms.
 ... Consult the log for full details

If you have errors here relating to "Log4J" then you must fix these first. If you receive no output
about which class was ENHANCED then you should look in the DataNucleus enhancer log for
errors. The enhancer performs much error checking on the validity of the passed MetaData and the
majority of errors are caught at this point. You can also use the DataNucleus Enhancer to check
whether classes are enhanced. To invoke the enhancer in this mode you specify the checkonly flag.
This will return a list of the classes, stating whether each class is enhanced for persistence under
JPA or not. The classes need to be in the CLASSPATH

A CLASSPATH should contain a set of JAR’s, and a set of directories. It should NOT
explictly include class files, and should NOT include parts of the package names.
If in doubt please consult a Java book)

8

Runtime Enhancement
When operating in a JavaEE environment (JBoss, WebSphere, etc) instead set the persistence
property datanucleus.jpa.addClassTransformer to true. Note that this is only for a real JavaEE
server that implements the JavaEE parts of the JPA spec.

To enable runtime enhancement in other environments, the javaagent option must be set in the
java command line. For example,

java -javaagent:datanucleus-core.jar=-api=JPA Main

The statement above will mean that all classes, when being loaded, will be processed by the
ClassFileTransformer (except class in packages "java.", "javax.", "org.datanucleus.*"). This means
that it can be slow since the MetaData search algorithm will be utilised for each. To speed this up
you can specify an argument to that command specifying the names of package(s) that should be
processed (and all others will be ignored). Like this

java -javaagent:datanucleus-core.jar=-api=JPA,mydomain.mypackage1,mydomain.mypackage2
Main

so in this case only classes being loaded that are in mydomain.mypackage1 and
mydomain.mypackage2 will be attempted to be enhanced.

Please take care over the following when using runtime enhancement

• When you have a class with a field of another entity type make sure that you mark the field
with the relation annotation (@OneToOne, @OneToMany, @ManyToOne, @ManyToMany etc)
since with runtime enhancement at that point the related class is likely not yet enhanced so will
likely not be marked as persistent otherwise. Be explicit

• If the agent jar is not found make sure it is specified with an absolute path.

9

persistence.html#emf_props_dn_emf

Programmatic API
You could alternatively programmatively enhance classes from within your application.

import org.datanucleus.enhancer.DataNucleusEnhancer;

DataNucleusEnhancer enhancer = new DataNucleusEnhancer("JPA", null);
enhancer.setVerbose(true);
enhancer.addPersistenceUnit("MyPersistenceUnit");
enhancer.enhance();

This will look in META-INF/persistence.xml and enhance all classes defined by that unit. Please
note that you will need to load the enhanced version of the class into a different ClassLoader
after performing this operation to use them.

10

Enhancement Contract Details

Persistable
JPA allows implementations to bytecode-enhance persistable classes to implement some interface to
provide them with change tracking etc. DataNucleus provides its own byte-code enhancer (in the
datanucleus-core.jar) to enhance users entity classes to implement this Persistable interface. If we
start off with the following class

@Entity
public class MyClass
{
 String field1;
 String field2;
 ...
}

This is bytecode enhanced for JPA to implement Persistable and Detachable.

The example above doesn’t show all Persistable methods, but demonstrates that all added methods
and fields are prefixed with "dn" to distinguish them from the users own methods and fields. Also
each persistent field of the class will be given a dnGetXXX, dnSetXXX method so that accesses of
these fields are intercepted so that DataNucleus can manage their "dirty" state. Regarding the
Detachable interface, the main thing to know is that the detached state (object id of the datastore
object, the version of the datastore object when it was detached, and which fields were detached is
stored in "dnDetachedState") is stored in the object when it is detached, and available to be merged
later on.

Byte-Code Enhancement Myths
Some groups (e.g Hibernate) in the past perpetuated arguments against "byte-code enhancement"
saying that it was somehow 'evil'. The most common were :-

11

http://www.datanucleus.org/javadocs/core/5.0/org/datanucleus/enhancement/Persistable.html
http://www.datanucleus.org/javadocs/core/5.0/org/datanucleus/enhancement/Detachable.html

• Slows down the code-test cycle. This is erroneous since you only need to enhance just before test
and the provided tools for Ant, Eclipse and Maven all do the enhancement job automatically
and rapidly.

• Is less "lazy" than the proxy approach since you have to load the object as soon as you get a
pointer to it. In a 1-1 relation you have to load the object then since you would cause issues
with null pointers otherwise. With 1-N relations you load the elements of the collection/map
only when you access them and not the collection/map. Hardly an issue then is it!

• Fail to detect changes to public fields unless you enhance your client code. Firstly very few people
will be writing code with public fields since it is bad practice in an OO design, and secondly, this
is why we have "PersistenceAware" classes.

So as you can see, there are no valid reasons against byte-code enhancement, and the pluses are
that runtime detection of dirty events on objects is much quicker, hence your persistence layer
operates faster without any need for iterative reflection-based checks. The fact is that Hibernate
itself also now has a mode whereby you can do bytecode enhancement although not the default
mode of Hibernate. So maybe it wasn’t so evil after all ?

Decompilation
Many people will wonder what actually happens to a class upon bytecode enhancement. In simple
terms the necessary methods and fields are added so as to implement Persistable and Detachable as
described above. If you want to check this, just use a Java decompiler such as JD. It has a nice GUI
allowing you to just select your class to decompile and shows you the source.

12

http://jd.benow.ca/

	JPA Enhancement Guide (v5.0)
	Table of Contents
	Maven
	Ant
	Manually
	Runtime Enhancement
	Programmatic API
	Enhancement Contract Details
	Persistable
	Byte-Code Enhancement Myths
	Decompilation

