
JPA Query Guide (v5.0)

Table of Contents
Query API . 2

setFirstResult(), setMaxResults() . 2

setHint() . 2

setParameter() . 3

getResultList() . 3

getSingleResult() . 3

executeUpdate() . 4

setFlushMode() . 4

setLockMode() . 4

Large Result Sets : Loading Results at Commit() . 4

Result Set : Caching of Results . 5

Large Result Sets : Size . 5

RDBMS : Result Set Type . 5

RDBMS : Result Set Control . 6

JPQL . 7

SELECT Syntax . 7

FROM Clause . 7

WHERE clause (filter) . 10

GROUP BY/HAVING clauses . 10

ORDER BY clause . 11

Fetched Fields . 11

Fields/Properties . 12

Operators . 12

Literals . 13

Parameters . 13

CASE expressions. 13

JPQL Functions . 14

Collection Fields . 17

Map Fields . 18

Subqueries . 18

Specify candidates to query over. 19

Range of Results . 19

Query Result . 20

Query Execution . 21

JPQL In-Memory queries . 22

Named Query . 22

Saving a Query as a Named Query . 23

JPQL Strictness . 23

JPQL : SQL Generation for RDBMS . 23

JPQL DELETE Queries . 24

JPQL UPDATE Queries . 25

JPQL BNF Notation . 25

Geospatial Functions . 30

Criteria . 41

Creating a Criteria query . 41

JPQL equivalent of the Criteria query . 41

Criteria API : Result clause . 41

Criteria API : From clause joins . 42

Criteria API : Filter . 42

Criteria API : Ordering . 43

Criteria API : Parameters . 43

Criteria API : Subqueries . 44

Criteria API : Result as Tuple . 44

Executing a Criteria query . 45

Criteria API : UPDATE query . 45

Criteria API : DELETE query . 45

Static MetaModel . 46

Native Queries . 49

Input Parameters . 49

Range of Results . 49

Query Execution . 50

SQL Result Definition . 50

Named Native Query . 53

Stored Procedures . 55

Simple execution, returning a result set . 55

Simple execution, returning output parameters . 55

Generalised execution, for multiple result sets . 56

Named Stored Procedure Queries . 56

Query Cache . 57

Generic Query Compilation Cache . 57

Datastore Query Compilation Cache . 57

Query Results Cache . 58

Once you have persisted objects you need to query them. For example if you
have a web application representing an online store, the user asks to see all
products of a particular type, ordered by the price. This requires you to query
the datastore for these products. JPA specifies support for

• JPQL : a string-based query language between SQL and OO.

• Criteria : following JPQL syntax but providing an API supporting refactoring
of classes and the queries they are used in.

• Native : equates to SQL when using RDBMS, and CQL when using Cassandra.

• RDBMS Stored Procedures, and in-datastore procedure invocation.

Which query language is used is down to the developer. The data-tier of an
application could be written by a primarily Java developer, who would typically
think in an object-oriented way and so would likely prefer JPQL. On the other
hand the data-tier could be written by a datastore developer who is more
familiar with SQL concepts and so could easily make more use of SQL. This is
the power of an implementation like DataNucleus in that it provides the
flexibility for different people to develop the data-tier utilising their own skills
to the full without having to learn totally new concepts.

There are 2 categories of queries with JPA :-

• Programmatic Query where the query is defined using the JPA Query API.

• Named Query where the query is defined in MetaData and referred to by its
name at runtime(for JPQL, Native Query and Stored Procedures).

1

#jpql
#criteria
#native
#stored_procedures
#jpql_named
#native_named
#stored_procedures_named

Query API
Let’s now try to understand the Query API in JPA . We firstly need to look at a typical Query.
We’ll take 2 examples

Let’s create a JPQL query to highlight its usage

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ascending");
q.setParameter("threshold", my_threshold);
List results = q.getResultList();

In this Query, we implicitly select JPQL by using the method EntityManager.createQuery(), and the
query is specified to return all objects of type Product (or subclasses) which have the field param2
less than some threshold value ordering the results by the value of field param1. We’ve specified
the query like this because we want to pass the threshold value in as a parameter (so maybe
running it once with one value, and once with a different value). We then set the parameter value
of our threshold parameter. The Query is then executed to return a List of results. The example is to
highlight the typical methods specified for a (JPQL) Query.

And for a second example we create a native (SQL) query

Query q = em.createNativeQuery("SELECT * FROM Product p WHERE p.param2 < ?1");
q.setParameter(1, my_threshold);
List results = q.getResultList();

So we implicitly select SQL by using the method EntityManager.createNativeQuery(), and the query
is specified like in the JPQL case to return all instances of type Product (using the table name in this
SQL query) where the column param2 is less than some threshold value.

setFirstResult(), setMaxResults()
A query will by default return all of the results that it finds. You can restrict how many results are
returned by use of two methods. So you could do

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ascending");
q.setFirstResult(1);
q.setMaxResults(3);

so we will get results 1, 2, and 3 returned only. The first result starts at 0 by default.

setHint()
JPA’s query API allows implementations to support extensions ("hints") and provides a simple

2

http://www.datanucleus.org/javadocs/javax.persistence/2.1/javax/persistence/Query.html

interface for enabling the use of such extensions on queries.

q.setHint("{extension_name}", value);

JPA supports some standard hints, namely javax.persistence.fetchgraph,
javax.persistence.loadgraph, javax.persistence.query.timeout,
javax.persistence.lock.timeout. DataNucleus provides various vendor-specific hints for different
types of queries (see different parts of this documentation).

setParameter()
When queries take values (literals) it is usually best practice to define these as parameters. JPA’s
query API supports named and numbered parameters and provides method for setting the value of
particular parameters. To set a named parameter, for example, you could do

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ascending");
q.setParameter("threshold", value);

To set a numbered parameter you could do

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < ?1 ORDER BY
p.param1 ascending");
q.setParameter(1, value);

Numbered parameters are numbered from 1.

getResultList()
To execute a JPA query you would typically call getResultList. This will return a List of results. This
should not be called when the query is an "UPDATE"/"DELETE".

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ascending");
q.setParameter("threshold", value);
List results = q.getResultList();

getSingleResult()
To execute a JPA query where you are expecting a single value to be returned you would call
getSingleResult. This will return the single Object. If the query returns more than one result then
you will get an Exception. This should not be called when the query is an "UPDATE"/"DELETE".

3

Query q = em.createQuery("SELECT p FROM Product p WHERE p.param2 = :value");
q.setParameter("value", val1);
Product prod = q.getSingleResult();

executeUpdate()
To execute a JPA UPDATE/DELETE query you would call executeUpdate. This will return the number
of objects changed by the call. This should not be called when the query is a "SELECT".

Query q = em.createQuery("DELETE FROM Product p");
int number = q.executeUpdate();

setFlushMode()
By default, when a query is executed it will be evaluated against the contents of the datastore at the
point of execution. If there are any outstanding changes waiting to be flushed then these will not
feature in the results. To make sure all outstanding changes are respected

q.setFlushMode(FlushModeType.AUTO);

setLockMode()
JPA allows control over whether objects found by a fetch (JPQL query) are locked during that
transaction so that other transactions can’t update them in the meantime. For example

q.setLockMode(LockModeType.PESSIMISTIC_READ);

You can also specify this for all queries for all EntityManagers using a persistence property
datanucleus.rdbms.useUpdateLock.

Large Result Sets : Loading Results at Commit()

When a transaction is committed by default all remaining results for a query are loaded so that the
query is usable thereafter. With a large result set you clearly don’t want this to happen. So in this
case you should set the query hint datanucleus.query.loadResultsAtCommit to false.

To do this on a per query basis for JPA you would do

query.setHint("datanucleus.query.loadResultsAtCommit", "false");

4

Result Set : Caching of Results

When you execute a query, the query results are typically loaded when the user accesses each row.
Results that have been read can then be cached locally. You can control this caching to optimise it
for your memory requirements. You can set the query hint datanucleus.query.resultCacheType
and it has the following possible values

• weak : use a weak reference map for caching (default)

• soft : use a soft reference map for caching

• hard : use a Map for caching (objects not garbage collected)

• none : no caching (hence uses least memory)

To do this on a per query basis, you would do

query.setHint("datanucleus.query.resultCacheType", "weak");

Large Result Sets : Size

If you have a large result set you clearly don’t want to instantiate all objects since this would hit the
memory footprint of your application. To get the number of results many JDBC drivers, for
example, will load all rows of the result set. This is to be avoided so DataNucleus provides control
over the mechanism for getting the size of results. The persistence property
datanucleus.query.resultSizeMethod has a default of last (which means navigate to the last
object, hence hitting the JDBC driver problem). On RDBMS, if you set this to count then it will use a
simple "count()" query to get the size.

To do this on a per query basis you would do

query.setHint("datanucleus.query.resultSizeMethod", "count");

RDBMS : Result Set Type

For RDBMS datastores, java.sql.ResultSet defines three possible result set types.

• forward-only : the result set is navegable forwards only

• scroll-sensitive : the result set is scrollable in both directions and is sensitive to changes in the
datastore

• scroll-insensitive : the result set is scrollable in both directions and is insensitive to changes in

5

the datastore

DataNucleus allows specification of this type as a query extension
datanucleus.rdbms.query.resultSetType.

To do this on a per query basis you would do

query.setHint("datanucleus.rdbms.query.resultSetType", "scroll-insensitive");

The default is forward-only. The benefit of the other two is that the result set will be scrollable and
hence objects will only be read in to memory when accessed. So if you have a large result set you
should set this to one of the scrollable values.

RDBMS : Result Set Control

DataNucleus RDBMS provides a useful extension allowing control over the ResultSet’s that are
created by queries. You have at your convenience some properties that give you the power to
control whether the result set is read only, whether it can be read forward only, the direction of
fetching etc.

To do this on a per query basis you would do

query.setHint("datanucleus.rdbms.query.fetchDirection", "forward");
query.setHint("datanucleus.rdbms.query.resultSetConcurrency", "read-only");

Alternatively you can specify these as persistence properties so that they apply to all queries for
that PMF/EMF. Again, the properties are

• datanucleus.rdbms.query.fetchDirection - controls the direction that the ResultSet is
navigated. By default this is forwards only. Use this property to change that.

• datanucleus.rdbms.query.resultSetConcurrency - controls whether the ResultSet is read only
or updateable.

Bear in mind that not all RDBMS support all of the possible values for these options. That said, they
do add a degree of control that is often useful.

6

JPQL
The JPA specification defines JPQL (a pseudo-OO query language, with SQL-like syntax), for
selecting objects from the datastore. To provide a simple example, this is what you would do

Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = 'Jones'");
List results = q.getResultList();

This finds all "Person" objects with surname of "Jones". You specify all details in the query.

SELECT Syntax
In JPQL queries you define the query in a single string, defining the result, the candidate class(es),
the filter, any grouping, and the ordering. This string has to follow the following pattern

SELECT [<result>]
 FROM <from_entities_and_variables>
 [WHERE <filter>]
 [GROUP BY <grouping>] [HAVING <having>]
 [ORDER BY <ordering>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

If you set the persistence property datanucleus.query.jpql.allowRange to true then you can
optionally also specify the range of results required in the JPQL string after the ordering. It accepts
the following format when this is specified

SELECT [<result>]
 FROM <from_entities_and_variables>
 [WHERE <filter>]
 [GROUP BY <grouping>] [HAVING <having>]
 [ORDER BY <ordering>]
 [RANGE <fromInclusive>,<toExclusive>]

where fromInclusive is the first row to be returned (origin = 0), and toExclusive is the row after the
last one to be returned).

FROM Clause
The FROM clause declares query identification variables that represent iteration over objects in the
database. The syntax of the FROM clause is as follows:

7

from_clause ::= FROM identification_variable_declaration {,
{identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join | fetch_join
}*
range_variable_declaration ::= entity_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable
[join_condition]
fetch_join ::= join_spec FETCH join_association_path_expression
join_association_path_expression ::= join_collection_valued_path_expression |
join_single_valued_path_expression |
 TREAT(join_collection_valued_path_expression AS subtype) |
TREAT(join_single_valued_path_expression AS subtype)
join_collection_valued_path_expression::=
identification_variable.{single_valued_embeddable_object_field.}*collection_valued_fie
ld
join_single_valued_path_expression::=
identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_
field
join_spec ::= [LEFT [OUTER] | INNER] JOIN
join_condition ::= ON conditional_expression
collection_member_declaration ::= IN (collection_valued_path_expression) [AS]
identification_variable

The FROM clause firstly defines the candidate entity for the query. You can specify the candidate
fully-qualified, or you can specify just the entity name. Using our example

Using candidate name fully qualified
SELECT p FROM mydomain.Person p

Using entity name
SELECT p FROM Person p

By default the entity name is the last part of the class name (without the package), but you can
specify it in metadata

Firstly, in XML metadata

<entity class="mydomain.Person" name="ThePerson">
 ...
</entity>

or using annotations

8

@Entity(name="ThePerson")
public class Person ...

The FROM clause also allows a user to add some explicit joins to related entities, and assign aliases
to the joined entities. These are then usable in the filter/ordering/result etc. If you don’t add any
joins DataNucleus will add joins where they are implicit from the filter expression for example. The
FROM clause is of the following structure

FROM {candidate_entity} {candidate_alias}
 [[[LEFT [OUTER] | INNER] JOIN] join_spec [join_alias] *

With JPQL you are explicitly stating that the join across join_spec is performed as "LEFT OUTER" or
"INNER" (rather than just leaving it to DataNucleus to decide which to use). Note that the join_spec
can be a relation field, or alternately if you have a Map of non-Entity keys/values then also the Map
field. If you provide the join_alias then you can use it thereafter in other clauses of the query.

Some examples of FROM clauses.

Join across 2 relations, allowing referral to Address (a) and Owner (o)
SELECT p FROM Person p JOIN p.address a JOIN a.owner o WHERE o.name = 'Fred'

Join to a Map relation field and access to the key/value of the Map.
SELECT VALUE(om) FROM Company c INNER JOIN c.officeMap om ON KEY(om) = 'London'

If you specify "LEFT OUTER FETCH" or "INNER FETCH" (i.e you specify FETCH)this means that you
want those fields/properties fetching by this query. This doesn’t mean that DataNucleus will
definitely fetch them in the same query (because sometimes it is impossible to fetch things like
multi-valued fields in a single query) but that it will attempt to fetch all fields that are selected (as
well as the ones that are defaulted to EAGER).

In strict JPA the entity name cannot be a MappedSuperclass entity name. That is, if you have an
abstract superclass that is persistable, you cannot query for instances of that superclass and its
subclasses. We consider this a significant shortcoming of the querying capability, and allow the
entity name to also be of a MappedSuperclass. You are unlikely to find this supported in other JPA
implementations, but then maybe that’s why you chose DataNucleus?

In strict JPA you cannot join to another "root" element. That is, you define JOIN syntax to the
following element along a relation from the previous element. DataNucleus supports joining to a
(new) "root" element potentially without any relation. See this example

SELECT p FROM Person p LEFT OUTER JOIN Address a ON p.addressName = a.name

9

Here we simply chose an ON clause to join the two roots.

In strict JPA you cannot join to an embedded element class (of an embeddable). With DataNucleus
you can do this, and hence form queries using fields of the embeddable (not available in most other
JPA providers). See this example, where class Person has a Collection of embeddable Address
objects.

SELECT p FROM Person p LEFT OUTER JOIN p.addresses a WHERE a.name = 'Home'

RDBMS : By default if you don’t specify the JOIN to some related object in the FROM clause and
instead navigate through a 1-1/N-1 relation like "a.owner" then it will join using INNER JOIN. You
can change this default by specifying the persistence property (to apply to all queries) or query hint
datanucleus.query.jpql.navigationJoinType and set it to either INNERJOIN or LEFTOUTERJOIN.
You can also set the default for the filter only using the persistence property(to apply to all queries)
or query hint datanucleus.query.jpql.navigationJoinTypeForFilter and set it to either INNERJOIN
or LEFTOUTERJOIN.

WHERE clause (filter)
The most important thing to remember when defining the filter for JPQL is that think how you
would write it in SQL, and its likely the same except for FIELD names instead of COLUMN
names. The filter has to be a boolean expression, and can include the candidate entity,
fields/properties, literals, functions, parameters, operators and subqueries

GROUP BY/HAVING clauses
The GROUP BY construct enables the aggregation of values according to a set of properties. The
HAVING construct enables conditions to be specified that further restrict the query result. Such
conditions are restrictions upon the groups. The syntax of the GROUP BY and HAVING clauses is as
follows:

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause.
The HAVING clause causes those groups to be retained that satisfy the condition of the HAVING
clause. The requirements for the SELECT clause when GROUP BY is used follow those of SQL:
namely, any item that appears in the SELECT clause (other than as an argument to an aggregate
function) must also appear in the GROUP BY clause. In forming the groups, null values are treated

10

#jpql_fields_properties
#jpql_literals
#jpql_functions
#jpql_parameters
#jpql_operators
#jpql_subqueries

as the same for grouping purposes. Grouping by an entity is permitted. In this case, the entity must
contain no serialized state fields or lob-valued state fields. The HAVING clause must specify search
conditions over the grouping items or aggregate functions that apply to grouping items. If there is
no GROUP BY clause and the HAVING clause is used, the result is treated as a single group, and the
select list can only consist of aggregate functions. When a query declares a HAVING clause, it must
always also declare a GROUP BY clause.

Some examples

SELECT p.firstName, p.lastName FROM Person p GROUP BY p.lastName

SELECT p.firstName, p.lastName FROM Person p GROUP BY p.lastName HAVING
COUNT(p.lastName) > 1

ORDER BY clause
The ORDER BY clause allows the objects or values that are returned by the query to be ordered. The
syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression | result_variable {ASC | DESC}

By default your results will be returned in the order determined by the datastore, so don’t rely on
any particular order. You can, of course, specify the order yourself. You do this using field/property
names and ASC/DESC keywords. For example

field1 ASC, field2 DESC

which will sort primarily by field1 in ascending order, then secondarily by field2 in descending
order.

Although it is not (yet) standard JPQL, DataNucleus also supports specifying a directive for where
NULL values of the ordered field/property go in the order, so the full syntax supported is

fieldName {ASC|DESC} {NULLS FIRST|NULLS LAST}

This is only supported for a few RDBMS including H2, HSQLDB, PostgreSQL, DB2,
Oracle, Derby, Firebird, SQLServer v11+.

Fetched Fields
By default a query will fetch fields according to their defined EAGER/LAZY setting, so fields like

11

primitives, wrappers, Dates, and 1-1/N-1 relations will be fetched, whereas 1-N/M-N fields will not
be fetched. JPQL allows you to include FETCH JOIN as a hint to include 1-N/M-N fields where
possible. For RDBMS datastores any multi-valued field will be bulk-fetched if it is defined to be
EAGER or is placed in the current EntityGraph. By bulk-fetched we mean that there will be a single
SQL issued per collection field (hence avoiding the N+1 problem).

You can disable this by either not putting multi-valued fields in the FetchPlan, or
by setting the query hint datanucleus.rdbms.query.multivaluedFetch to none
(default is exists using a single SQL per collection field, with EXISTS subquery).

All non-RDBMS datastores do respect this FETCH JOIN setting, since a collection/map is stored in a
single "column" in the object and so is readily retrievable.

You can also make use of Entity Graphs to have fuller control over what is retrieved from each
query.

Fields/Properties
In JPQL you refer to fields/properties in the query by referring to the field/bean name. For example,
if you are querying a candidate entity called Product and it has a field "price", then you access it like
this

price < 150.0

Note that if you want to refer to a field/property of an entity you can prefix the field by its alias

p.price < 150.0

You can also chain field references if you have an entity Product (alias = p) with a field of (entity)
Inventory, which has a field name, so you could do

p.inventory.name = 'Backup'

Operators
The operators are listed below in order of decreasing precedence.

• Navigation operator (.)

• Arithmetic operators:

• +, - unary

• *, / multiplication and division

• +, - addition and subtraction

12

persistence.html#entity_graphs

• Comparison operators : =, >, >=, <, ⇐, <> (not equal), [NOT] BETWEEN, [NOT] LIKE, [NOT] IN, IS
[NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF], [NOT] EXISTS

• Logical operators:

• NOT

• AND

• OR

Literals
JPQL supports literals of the following types : Number, boolean, character, String, NULL and
temporal. When String literals are specified using single-string format they should be surrounded
by single-quotes '. Please note that temporal literals are specified using JDBC escape syntax in String
form, namely

{d 'yyyy-mm-dd'} - a Date
{t 'hh:mm:ss'} - a Time
{ts 'yyyy-mm-dd hh:mm:ss.f...'} - a Timestamp

Parameters
In JPQL queries it is convenient to pass in parameters so we don’t have to define the same query for
different values. Let’s take two examples

Named Parameters :
Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = :surname AND
o.firstName = :forename");
q.setParameter("surname", theSurname);
q.setParameter("forename", theForename);

Numbered Parameters :
Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = ?1 AND p.firstName
= ?2");
q.setParameter(1, theSurname);
q.setParameter(2, theForename);

So in the first case we have parameters that are prefixed by : (colon) to identify them as a
parameter and we use that name when calling Query.setParameter(). In the second case we have
parameters that are prefixed by ? (question mark) and are numbered starting at 1. We then use the
numbered position when calling Query.setParameter().

CASE expressions
For particular use in the result clause, you can make use of a CASE expression where you want to
return different things based on some condition(s). Like this

13

Query q = em.createQuery(
 "SELECT p.personNum, CASE WHEN p.age < 18 THEN 'Youth' WHEN p.age >= 18 AND p.age
< 65 THEN 'Adult' ELSE 'Old' END FROM Person p");

So in this case the second result value will be a String, either "Youth", "Adult" or "Old" depending on
the age of the person. The BNF structure of the JPQL CASE expression is

CASE WHEN conditional_expression THEN scalar_expression
 {WHEN conditional_expression THEN scalar_expression}* ELSE scalar_expression
END

JPQL Functions
JPQL provides an SQL-like query language. Just as with SQL, JPQL also supports a range of functions
to enhance the querying possibilities. The tables below also mark whether a particular method is
supported for evaluation in-memory.

Please note that you can easily add support for other functions for evaluation "in-memory" using
this DataNucleus plugin point

Please note that you can easily add support for other functions with RDBMS datastore using this
DataNucleus plugin point

Aggregate Functions

There are a series of aggregate functions for aggregating the values of a field for all rows of the
results.

Function Name Description Stand
ard

In-
Mem
ory

COUNT(field) Returns the aggregate count of the field (Long)

MIN(field) Returns the minimum value of the field (type of the
field)

MAX(field) Returns the maximum value of the field (type of the
field)

AVG(field) Returns the average value of the field (Double)

SUM(field) Returns the sum of the field value(s) (Long, Double,
BigInteger, BigDecimal)

14

#jpql_inmemory
../extensions/extensions.html#query_method_evaluators
../extensions/extensions.html#rdbms_sql_method

String Functions

There are a series of functions to be applied to String fields.

Function Name Description Stand
ard

In-
Mem
ory

CONCAT(str_field,
str_field2 [, str_fieldX])

Returns the concatenation of the string fields

SUBSTRING(str_field, num1
[, num2])

Returns the substring of the string field starting at
position num1, and optionally with the length of num2

TRIM([trim_spec]
[trim_char] [FROM]
str_field)

Returns trimmed form of the string field

LOWER(str_field) Returns the lower case form of the string field

UPPER(str_field) Returns the upper case form of the string field

LENGTH(str_field) Returns the size of the string field (number of
characters)

LOCATE(str_field1,
str_field2 [, num])

Returns position of str_field2 in str_field1 optionally
starting at num

Temporal Functions

There are a series of functions for use with temporal values

Function Name Description Stand
ard

In-
Mem
ory

CURRENT_DATE Returns the current date (day month year) of the
datastore server

CURRENT_TIME Returns the current time (hour minute second) of the
datastore server

CURRENT_TIMESTAMP Returns the current timestamp of the datastore server

YEAR(dateField) Returns the year of the specified date in timezone it
was stored

MONTH(dateField) Returns the month of the specified date (1-12) in
timezone it was stored.

MONTH_JAVA(dateField) Returns the month of the specified date (0-11) in
timezone it was stored

DAY(dateField) Returns the day of the month of the specified date in
timezone it was stored

15

Function Name Description Stand
ard

In-
Mem
ory

HOUR(dateField) Returns the hour of the specified date in timezone it
was stored

MINUTE(dateField) Returns the minute of the specified date in timezone it
was stored

SECOND(dateField) Returns the second of the specified date in timezone it
was stored

Collection Functions

There are a series of functions for use with collection values

Function Name Description Stand
ard

In-
Mem
ory

INDEX(collection_field) Returns index number of the field element when that is
the element of an indexed List field.

SIZE(collection_field) Returns the size of the collection field. Empty collection
will return 0

Map Functions

There are a series of functions for use with maps

Function Name Description Stand
ard

In-
Mem
ory

KEY(map_field) Returns the key of the map

VALUE(map_field) Returns the value of the map

SIZE(map_field) Returns the size of the map field. Empty map will
return 0

Arithmetic Functions

There are a series of functions for arithmetic use

Function Name Description Stand
ard

In-
Mem
ory

ABS(numeric_field) Returns the absolute value of the numeric field

SQRT(numeric_field) Returns the square root of the numeric field

16

Function Name Description Stand
ard

In-
Mem
ory

MOD(num_field1,
num_field2)

Returns the modulus of the two numeric fields
(num_field1 % num_field2)

ACOS(num_field) Returns the arc-cosine of a numeric field

ASIN(num_field) Returns the arc-sine of a numeric field

ATAN(num_field) Returns the arc-tangent of a numeric field

COS(num_field) Returns the cosine of a numeric field

SIN(num_field) Returns the sine of a numeric field

TAN(num_field) Returns the tangent of a numeric field

DEGREES(num_field) Returns the degrees of a numeric field

RADIANS(num_field) Returns the radians of a numeric field

CEIL(num_field) Returns the ceiling of a numeric field

FLOOR(num_field) Returns the floor of a numeric field

LOG(num_field) Returns the natural logarithm of a numeric field

EXP(num_field) Returns the exponent of a numeric field

POWER(numeric_field,
numeric_value)

Returns the numeric field to the specified power

Other Functions

You have a further function available

Function Name Description Stand
ard

In-
Mem
ory

FUNCTION(name, [arg1
[,arg2 …]])

Executes the specified SQL function "name" with the
defined arguments

In addition, DataNucleus JPA provides support for a number of Geospatial functions.

Collection Fields
Where you have a collection field, often you want to navigate it to query based on some filter for
the element. To achieve this, you can clearly JOIN to the element in the FROM clause. Alternatively
you can use the MEMBER OF keyword. Let’s take an example, you have a field which is a Collection
of Strings, and want to return the owner object that has an element that is "Freddie".

17

query.html#jpql_geospatial_functions
#jpql_from

Query q = em.createQuery("SELECT p.firstName, p.lastName FROM Person p WHERE 'Freddie'
MEMBER OF p.nicknames");

Beyond this, you can also make use of the collection functions and use the size of the collection for
example.

Map Fields
Where you have a map field, often you want to navigate it to query based on some filter for the key
or value. Let’s take an example, you want to return the value for a particular key in the map of an
owner.

Query q = em.createQuery("SELECT VALUE(p.addresses) FROM Person p WHERE
KEY(p.addresses) = 'London Flat'");

Beyond this, you can also make use of the map functions and use the size of the map for example.

In the JPA spec they allow a user to interchangeably use "p.addresses" to refer to
the value of the Map. DataNucleus supports this usage but we strongly
recommend to explicitly use VALUE({field}) since it makes queries much more
readable.

Subqueries
With JPQL the user has a very flexible query syntax which allows for querying of the vast majority
of data components in a single query. In some situations it is desirable for the query to utilise the
results of a separate query in its calculations. JPQL also allows the use of subqueries. Here’s an
example

SELECT e FROM Employee e
WHERE e.salary > (SELECT avg(f.salary) FROM Employee f)

So we want to find all Employees that have a salary greater than the average salary. The subquery
must be in parentheses (brackets). Note that we have defined the subquery with an alias of "f",
whereas in the outer query the alias is "e".

ALL/ANY/SOME Expressions

One use of subqueries with JPQL is where you want to compare with some or all of a particular
expression. To give an example

18

#jpql_functions_collection
#jpql_functions_map

SELECT emp FROM Employee emp
WHERE emp.salary > ALL (SELECT m.salary FROM Manager m WHERE m.department =
emp.department)

So this returns all employees that earn more than all managers in the same department! You can
also compare with SOME/ANY, like this

SELECT emp FROM Employee emp
WHERE emp.salary > ANY (SELECT m.salary FROM Manager m WHERE m.department =
emp.department)

So this returns all employees that earn more than any one Manager in the same department.

EXISTS Expressions

Another use of subqueries in JPQL is where you want to check on the existence of a particular
thing. For example

SELECT DISTINCT emp FROM Employee emp
WHERE EXISTS (SELECT emp2 FROM Employee emp2 WHERE emp2 = emp.spouse)

So this returns the employees that have a partner also employed.

in strict JPQL you can only have subqueries in WHERE or HAVING clauses.
DataNucleus additionally allows them in the SELECT clause.

Specify candidates to query over

With JPA you always query objects of the candidate type in the datastore. DataNucleus extends this
and allows you to provide a Collection of candidate objects that will be queried (rather than going
to the datastore), and it will perform the querying "in-memory". You set the candidates like this

Query query = em.createQuery("SELECT p FROM Products p WHERE ...");
((org.datanucleus.api.jpa.JPAQuery)query).getInternalQuery().setCandidates(myCandidate
s);
List<Product> results = query.getResultList();

Range of Results
With JPQL you can select the range of results to be returned. For example if you have a web page
and you are paginating the results of some search, you may want to get the results from a query in
blocks of 20 say, with results 0 to 19 on the first page, then 20 to 39, etc. You can facilitate this as

19

follows

Query q = em.createQuery("SELECT p FROM Person p WHERE p.age > 20");
q.setFirstResult(0);
q.setMaxResults(20);

So with this query we get results 0 to 19 inclusive.

Query Result
Whilst the majority of the time you will want to return instances of a candidate class, JPQL also
allows you to return customised results. Consider the following example

Query q = em.createQuery("SELECT p.firstName, p.lastName FROM Person p WHERE p.age >
20");
List<Object[]> results = q.getResultList();

this returns the first and last name for each Person meeting that filter. Obviously we may have
some container class that we would like the results returned in, so if we change the query to this

Query<PersonName> q = em.createQuery(
 "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20", PersonName.
class);
List<PersonName> results = q.getResultList();

so each result is a PersonName, holding the first and last name. This result class needs to match one
of the following structures

• Constructor taking arguments of the same types and the same order as the result clause. An
instance of the result class is created using this constructor. For example

public class PersonName
{
 protected String firstName = null;
 protected String lastName = null;
 public PersonName(String first, String last)
 {
 this.firstName = first;
 this.lastName = last;
 }
}

• Default constructor, and setters for the different result columns, using the alias name for each
column as the property name of the setter. For example

20

public class PersonName
{
 protected String firstName = null;
 protected String lastName = null;
 public PersonName()
 {
 }
 public void setFirstName(String first) {this.firstName = first;}
 public void setLastName(String last) {this.lastName = last;}
}

• Default constructor, and a method void put(Object aliasName, Object value)

Note that if the setter property name doesn’t match the query result component name, you should
use AS {alias} in the query so they are the same.

A special case, where you don’t have a result class but want to easily extract multiple columns in
the form of a Tuple JPA provides a special class javax.persistence.Tuple to supply as the result class
in the above call. From that you can get hold of the column aliases, and their values.

Query<PersonName> q = em.createQuery(
 "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20", Tuple.class);
List<Tuple> results = q.getResultList();
for (Tuple t : results)
{
 List<TupleElement> cols = t.getElements();
 for (TupleElement col : cols)
 {
 String colName = col.getAlias();
 Object value = t.get(colname);
 }
}

Query Execution
There are two ways to execute a JPQL query. When you know it will return 0 or 1 results you call

Object result = query.getSingleResult();

If however you know that the query will return multiple results, or you just don’t know then you
would call

List results = query.getResultList();

21

JPQL In-Memory queries

The typical use of a JPQL query is to translate it into the native query language of the datastore and
return objects matched by the query. For many (usually non-RDBMS) datastores it is simply
impossible to support the full JPQL syntax in the datastore native query language and so it is
necessary to evaluate the query in-memory. This means that we evaluate as much as we can in the
datastore and then instantiate those objects and evaluate further in-memory. Here we document
the current capabilities of in-memory evaluation in DataNucleus.

• Subqueries using ALL, ANY, SOME, EXISTS are not currently supported

• MEMBER OF syntax is not currently supported.

To enable evaluation in memory you specify the query hint
datanucleus.query.evaluateInMemory to true as follows

query.setHint("datanucleus.query.evaluateInMemory","true");

Named Query
With the JPA API you can either define a query at runtime, or define it in the MetaData/annotations
for a class and refer to it at runtime using a symbolic name. This second option means that the
method of invoking the query at runtime is much simplified. To demonstrate the process, lets say
we have a class called Product (something to sell in a store). We define the JPA Meta-Data for the
class in the normal way, but we also have some query that we know we will require, so we define
the following in the Meta-Data.

<entity class="Product">
 ...
 <named-query name="SoldOut"><![CDATA[
 SELECT p FROM Product p WHERE p.status = "Sold Out"
]]></named-query>
</entity>

or using annotations

@Entity
@NamedQuery(name="SoldOut", query="SELECT p FROM Product p WHERE p.status = 'Sold
Out'")
public class Product {...}

Note that DataNucleus also supports specifying this using annotations in non-Entity classes.
This is beyond the JPA spec, but is very useful in real applications

22

So we have a JPQL query called "SoldOut" defined for the class Product that returns all Products
(and subclasses) that have a status of "Sold Out". Out of interest, what we would then do in our
application to execute this query would be

Query query = em.createNamedQuery("SoldOut");
List<Product> results = query.getResultList();

Saving a Query as a Named Query
You can save a query as a named query like this

Query q = em.createQuery("SELECT p FROM Product p WHERE ...");
...
emf.addNamedQuery("MyQuery", q);

DataNucleus also allows you to create a query, and then save it as a "named" query directly with the
query. You do this as follows

Query q = em.createQuery("SELECT p FROM Product p WHERE ...");
((org.datanucleus.api.jpa.JPAQuery)q).saveAsNamedQuery("MyQuery");

With both methods you can thereafter access the query via

Query q = em.createNamedQuery("MyQuery");

JPQL Strictness
By default DataNucleus allows some extensions in syntax over strict JPQL (as defined by the JPA
spec). To allow only strict JPQL you can do as follows

Query query = em.createQuery(...);
query.setHint("datanucleus.jpql.strict", "true");

JPQL : SQL Generation for RDBMS
With a JPQL query running on an RDBMS the query is compiled into SQL. Here we give a few
examples of what SQL is generated. You can of course try this for yourself observing the content of
the DataNucleus log.

In JPQL you specify a candidate class and its alias (identifier). In addition you can specify joins with
their respective alias. The DataNucleus implementation of JPQL will preserve these aliases in the

23

generated SQL.

JPQL:
SELECT p FROM Person p INNER JOIN p.bestFriend AS B

SQL:
SELECT P.ID
FROM PERSON P INNER JOIN PERSON B ON B.ID = P.BESTFRIEND_ID

With the JPQL MEMBER OF syntax this is typically converted into an EXISTS query.

JPQL:
SELECT DISTINCT p FROM Person p WHERE :param MEMBER OF p.friends

SQL:
SELECT DISTINCT P.ID FROM PERSON P
WHERE EXISTS (
 SELECT 1 FROM PERSON_FRIENDS P_FRIENDS, PERSON P_FRIENDS_1
 WHERE P_FRIENDS.PERSON_ID = P.ID
 AND P_FRIENDS_1.GLOBAL_ID = P_FRIENDS.FRIEND_ID
 AND 101 = P_FRIENDS_1.ID)

DataNucleus also allows you to view the generated SQL for query, like this

Query q = em.createQuery(...);

org.datanucleus.api.jpa.JPAQuery dnq = (org.datanucleus.api.jpa.JPAQuery)q;

Object sqlQuery = dnq.getNativeQuery();

In the case of an RDBMS, the sqlQuery is the SQL String. For Cassandra, it is the CQL query string,
and so on.

JPQL DELETE Queries
The JPA specification defines a mode of JPQL for deleting objects from the datastore. NOTE: his will
not invoke any cascading defined on a field basis, with only datastore-defined Foreign Keys
cascading. Additionally related objects already in-memory will not be updated.

DELETE Syntax

The syntax for deleting records is very similar to selecting them

DELETE FROM [<candidate-class> [[AS] {alias}]]] [WHERE <filter>]

24

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

Query query = em.createQuery("DELETE FROM Person p WHERE firstName = 'Fred'");
int numRowsDeleted = query.executeUpdate();

JPQL UPDATE Queries
The JPA specification defines a mode of JPQL for updating objects in the datastore.

This will not invoke any cascading defined on a field basis, with only datastore-
defined Foreign Keys cascading. Additionally related objects already in-memory
will not be updated

UPDATE Syntax

The syntax for updating records is very similar to selecting them

UPDATE [<candidate-class> [[AS] {alias}]] SET item1=value1, item2=value2 [WHERE
<filter>]

The "keywords" in the query are shown in UPPER CASE are case-insensitive.

Query query = em.createQuery("UPDATE Person p SET p.salary = 10000 WHERE age = 18");
int numRowsUpdated = query.executeUpdate();

In strict JPA you cannot use a subquery in the UPDATE clause. With DataNucleus JPA you can do
this so, for example, you can set a field to the result of a subquery.

Query query = em.createQuery("UPDATE Person p SET p.salary = (SELECT MAX(p2.salary)
FROM Person p2 WHERE age < 18) WHERE age = 18");

JPQL BNF Notation
The BNF defining the JPQL query language is shown below.

QL_statement ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

25

from_clause ::= FROM identification_variable_declaration
 {, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join | fetch_join
}*
range_variable_declaration ::= entity_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN
join_association_path_expression ::= join_collection_valued_path_expression |
join_single_valued_path_expression
join_collection_valued_path_expression::=

identification_variable.{single_valued_embeddable_object_field.}*collection_valued_fie
ld
join_single_valued_path_expression::=

identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_
field
collection_member_declaration ::=
 IN (collection_valued_path_expression) [AS] identification_variable
qualified_identification_variable ::= KEY(identification_variable) |
VALUE(identification_variable) |
 ENTRY(identification_variable)
single_valued_path_expression ::= qualified_identification_variable |
 state_field_path_expression | single_valued_object_path_expression
general_identification_variable ::= identification_variable |
KEY(identification_variable) |
 VALUE(identification_variable)

state_field_path_expression ::=
general_identification_variable.{single_valued_object_field.}*state_field
single_valued_object_path_expression ::=
 general_identification_variable.{single_valued_object_field.}*
single_valued_object_field
collection_valued_path_expression ::=

general_identification_variable.{single_valued_object_field.}*collection_valued_field

update_clause ::= UPDATE entity_name [[AS] identification_variable] SET update_item {,
update_item}*
update_item ::= [identification_variable.]{state_field | single_valued_object_field} =
new_value
new_value ::= scalar_expression | simple_entity_expression | NULL

delete_clause ::= DELETE FROM entity_name [[AS] identification_variable]

select_clause ::= SELECT [DISTINCT] select_item {, select_item}*
select_item ::= select_expression [[AS] result_variable]
select_expression ::= single_valued_path_expression | scalar_expression |

26

aggregate_expression |
 identification_variable | OBJECT(identification_variable) | constructor_expression
constructor_expression ::= NEW constructor_name (constructor_item {,
constructor_item}*)
constructor_item ::= single_valued_path_expression | scalar_expression |
aggregate_expression |
 identification_variable

aggregate_expression ::= { AVG | MAX | MIN | SUM } ([DISTINCT]
state_field_path_expression) |
 COUNT ([DISTINCT] identification_variable | state_field_path_expression |
 single_valued_object_path_expression)

where_clause ::= WHERE conditional_expression
groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable
having_clause ::= HAVING conditional_expression
orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression | result_variable [ASC | DESC]

subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause]
[having_clause]
subquery_from_clause ::= FROM subselect_identification_variable_declaration
 {, subselect_identification_variable_declaration | collection_member_declaration}*

subselect_identification_variable_declaration ::= identification_variable_declaration
|
 derived_path_expression [AS] identification_variable {join}*|
 derived_collection_member_declaration
derived_path_expression ::=

superquery_identification_variable.{single_valued_object_field.}*collection_valued_fie
ld |

superquery_identification_variable.{single_valued_object_field.}*single_valued_object_
field
derived_collection_member_declaration ::=
 IN
superquery_identification_variable.{single_valued_object_field.}*collection_valued_fie
ld
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::= single_valued_path_expression | scalar_expression |
aggregate_expression |
 identification_variable
scalar_expression ::= simple_arithmetic_expression | string_primary | enum_primary |
 datetime_primary | boolean_primary | case_expression | entity_type_expression
conditional_expression ::= conditional_term | conditional_expression OR
conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)

27

simple_cond_expression ::= comparison_expression | between_expression |
 in_expression | like_expression | null_comparison_expression |
 empty_collection_comparison_expression | collection_member_expression |
exists_expression
between_expression ::=
 arithmetic_expression [NOT] BETWEEN arithmetic_expression AND
arithmetic_expression |
 string_expression [NOT] BETWEEN string_expression AND string_expression |
 datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression
in_expression ::= {state_field_path_expression | type_discriminator} [NOT] IN
 { (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }
in_item ::= literal | single_valued_input_parameter
like_expression ::= string_expression [NOT] LIKE pattern_value [ESCAPE
escape_character]
null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS
[NOT] NULL

empty_collection_comparison_expression ::= collection_valued_path_expression IS [NOT]
EMPTY
collection_member_expression ::= entity_or_value_expression [NOT] MEMBER [OF]
collection_valued_path_expression
entity_or_value_expression ::= single_valued_object_path_expression |
state_field_path_expression |
 simple_entity_or_value_expression
simple_entity_or_value_expression ::= identification_variable | input_parameter |
literal
exists_expression::= [NOT] EXISTS (subquery)
all_or_any_expression ::= { ALL | ANY | SOME} (subquery)
comparison_expression ::=
 string_expression comparison_operator {string_expression | all_or_any_expression}
|
 boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |
 enum_expression { =|<>} {enum_expression | all_or_any_expression} |
 datetime_expression comparison_operator
 {datetime_expression | all_or_any_expression} |
 entity_expression { = | <>} {entity_expression | all_or_any_expression} |
 arithmetic_expression comparison_operator
 {arithmetic_expression | all_or_any_expression} |
 entity_type_expression { =|<>} entity_type_expression}
comparison_operator ::= = | > | >= | < | <= | <>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::= arithmetic_term | simple_arithmetic_expression { + |
- } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::= state_field_path_expression | numeric_literal |
 (simple_arithmetic_expression) | input_parameter | functions_returning_numerics |
 aggregate_expression | case_expression
string_expression ::= string_primary | (subquery)
string_primary ::= state_field_path_expression | string_literal |
 input_parameter | functions_returning_strings | aggregate_expression |

28

case_expression
datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::= state_field_path_expression | input_parameter |
functions_returning_datetime |
 aggregate_expression | case_expression | date_time_timestamp_literal
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::= state_field_path_expression | boolean_literal | input_parameter |
 case_expression
enum_expression ::= enum_primary | (subquery)
enum_primary ::= state_field_path_expression | enum_literal | input_parameter |
case_expression
entity_expression ::= single_valued_object_path_expression | simple_entity_expression
simple_entity_expression ::= identification_variable | input_parameter
entity_type_expression ::= type_discriminator | entity_type_literal | input_parameter
type_discriminator ::= TYPE(identification_variable |
single_valued_object_path_expression |
 input_parameter)
functions_returning_numerics::= LENGTH(string_primary) |
 LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |
 ABS(simple_arithmetic_expression) |
 SQRT(simple_arithmetic_expression) |
 MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
 SIZE(collection_valued_path_expression) |
 INDEX(identification_variable)
functions_returning_datetime ::= CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP

functions_returning_strings ::=
 CONCAT(string_primary, string_primary {, string_primary}*) |
 SUBSTRING(string_primary, simple_arithmetic_expression [,
simple_arithmetic_expression]) |
 TRIM([[trim_specification] [trim_character] FROM] string_primary) |
 LOWER(string_primary) |
 UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH
case_expression ::= general_case_expression | simple_case_expression |
coalesce_expression |
 nullif_expression
general_case_expression::= CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause::= WHEN conditional_expression THEN scalar_expression
simple_case_expression::=
 CASE case_operand simple_when_clause {simple_when_clause}*
 ELSE scalar_expression
 END
case_operand::= state_field_path_expression | type_discriminator
simple_when_clause::= WHEN scalar_expression THEN scalar_expression
coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression::= NULLIF(scalar_expression, scalar_expression)

29

Geospatial Functions

When querying spatial data you can make use of a set of spatial methods on the various Java
geometry types. The list contains all of the functions detailed in Section 3.2 of the OGC Simple
Features specification. Additionally DataNucleus provides some commonly required methods like
bounding box test and datastore specific functions. The following tables list all available functions
as well as information about which RDBMS implement them. An entry in the "Result" column
indicates, whether the funcion may be used in the result part of a JPQL query.

Functions for Constructing a Geometry Value given its Well-known Text
Representation (OGC SF 3.2.6)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.geomFromText(String
, Integer)

Construct a Geometry value given its well-
known textual representation.

OGC SF

Spatial.pointFromText(String
, Integer)

Construct a Point. OGC SF

Spatial.lineFromText(String,
Integer)

Construct a LineString. OGC SF

Spatial.polyFromText(String,
Integer)

Construct a Polygon. OGC SF

Spatial.mPointFromText(Stri
ng, Integer)

Construct a MultiPoint. OGC SF

Spatial.mLineFromText(Strin
g, Integer)

Construct a MultiLineString. OGC SF

Spatial.mPolyFromText(Strin
g, Integer)

Construct a MultiPolygon. OGC SF

Spatial.geomCollFromText(St
ring, Integer)

Construct a GeometryCollection. OGC SF

[1] These functions can’t be used in the return part because it’s not possible to determine the return
type from the parameters.

Functions for Constructing a Geometry Value given its Well-known Binary
Representation (OGC SF 3.2.7)

30

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.geomFromWKB(Strin
g, Integer)

Construct a Geometry value given its well-
known binary representation.

OGC SF

Spatial.pointFromWKB(Strin
g, Integer)

Construct a Point. OGC SF

Spatial.lineFromWKB(String,
Integer)

Construct a LineString. OGC SF

Spatial.polyFromWKB(String
, Integer)

Construct a Polygon. OGC SF

Spatial.mPointFromWKB(Stri
ng, Integer)

Construct a MultiPoint. OGC SF

Spatial.mLineFromWKB(Stri
ng, Integer)

Construct a MultiLineString. OGC SF

Spatial.mPolyFromWKB(Stri
ng, Integer)

Construct a MultiPolygon. OGC SF

Spatial.geomCollFromWKB(S
tring, Integer)

Construct a GeometryCollection. OGC SF

[1] These functions can’t be used in the return part because it’s not possible to determine the return
type from the parameters.

Functions on Type Geometry (OGC SF 3.2.10)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.dimension(Geometry) Returns the dimension of the Geometry. OGC SF

Spatial.geometryType(Geom
etry)

Returns the name of the instantiable
subtype of Geometry.

OGC SF

Spatial.asText(Geometry) Returns the well-known textual
representation.

OGC SF

Spatial.asBinary(Geometry) Returns the well-known binary
representation.

OGC SF

Spatial.srid(Geometry) Returns the Spatial Reference System ID
for this Geometry.

OGC SF

31

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.isEmpty(Geometry) TRUE if this Geometry corresponds to the
empty set.

OGC SF

[1]

Spatial.isSimple(Geometry) TRUE if this Geometry is simple, as
defined in the Geometry Model.

OGC SF

[1]

Spatial.boundary(Geometry) Returns a Geometry that is the
combinatorial boundary of the Geometry.

OGC SF

Spatial.envelope(Geometry) Returns the rectangle bounding Geometry
as a Polygon.

OGC SF

[1] Oracle does not allow boolean expressions in the SELECT-list.

Functions on Type Point (OGC SF 3.2.11)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.x(Point) Returns the x-coordinate of the Point as a
Double.

OGC SF

Spatial.y(Point) Returns the y-coordinate of the Point as a
Double.

OGC SF

Functions on Type Curve (OGC SF 3.2.12)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.startPoint(Curve)) Returns the first point of the Curve. OGC SF

Spatial.endPoint(Curve)) Returns the last point of the Curve. OGC SF

Spatial.isRing(Curve) Returns TRUE if Curve is closed and
simple. .

OGC SF

[1]

[1] Oracle does not allow boolean expressions in the SELECT-list.

32

Functions on Type Curve and Type MultiCurve (OGC SF 3.2.12, 3.2.17)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.isClosed(Curve),
Spatial.isClosed(MultiCurve)

Returns TRUE if Curve is closed, i.e., if
StartPoint(Curve) = EndPoint(Curve).

OGC SF

[1]

Spatial.length(Curve),
Spatial.length(MultiCurve)

Returns the length of the Curve. OGC SF

[1] Oracle does not allow boolean expressions in the SELECT-list.

Functions on Type LineString (OGC SF 3.2.13)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.numPoints(LineStrin
g)

Returns the number of points in the
LineString.

OGC SF

Spatial.pointN(LineString,
Integer)

Returns Point n. OGC SF

Functions on Type Surface and Type MultiSurface (OGC SF 3.2.14, 3.2.18)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.centroid(Surface),
centroid(MultiSurface)

Returns the centroid of Surface, which
may lie outside of it.

OGC SF

[1]

Spatial.pointOnSurface(Surfa
ce),
pointOnSurface(MultiSurfac
e)

Returns a Point guaranteed to lie on the
surface.

OGC SF

[1]

Spatial.area(Surface),
area(MultiSurface)

Returns the area of Surface. OGC SF

[1] MySQL does not implement these functions.

33

Functions on Type Polygon (OGC SF 3.2.15)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.exteriorRing(Polygon
)

Returns the exterior ring of Polygon. OGC SF

Spatial.numInteriorRing(Pol
ygon)

Returns the number of interior rings. OGC SF

Spatial.interiorRingN(Polygo
n, Integer)

Returns the nth interior ring. OGC SF

Functions on Type GeomCollection (OGC SF 3.2.16)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.numGeometries(Geo
mCollection)

Returns the number of geometries in the
collection.

OGC SF

Spatial.geometryN(GeomColl
ection, Integer)

Returns the nth geometry in the
collection.

OGC SF

Functions that test Spatial Relationships (OGC SF 3.2.19)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.equals(Geometry,
Geometry)

TRUE if the two geometries are spatially
equal.

OGC SF

[2]

Spatial.disjoint(Geometry,
Geometry)

TRUE if the two geometries are spatially
disjoint.

OGC SF

[2]

Spatial.touches(Geometry,
Geometry)

TRUE if the first Geometry spatially
touches the other Geometry.

OGC SF

[2]

Spatial.within(Geometry,
Geometry)

TRUE if first Geometry is completely
contained in second Geometry.

OGC SF

[2]

34

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.overlaps(Geometry,
Geometry)

TRUE if first Geometries is spatially
overlapping the other Geometry.

OGC SF

[2]

Spatial.crosses(Geometry,
Geometry)

TRUE if first Geometry crosses the other
Geometry.

OGC SF

[3]

Spatial.intersects(Geometry,
Geometry)

TRUE if first Geometry spatially intersects
the other Geometry.

OGC SF

[2]

Spatial.contains(Geometry,
Geometry)

TRUE if second Geometry is completely
contained in first Geometry.

OGC SF

[2]

Spatial.relate(Geometry,
Geometry, String)

TRUE if the spatial relationship specified
by the patternMatrix holds.

OGC SF

[1] Oracle does not allow boolean expressions in the SELECT-list. [2] MySQL does not implement
these functions according to the specification. They return the same result as the corresponding
MBR-based functions.

Function on Distance Relationships (OGC SF 3.2.20)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.distance(Geometry,
Geometry)

Returns the distance between the two
geometries.

OGC SF

[1]

[1] MariaDB 5.3.3+ implements this.

Functions that implement Spatial Operators (OGC SF 3.2.21)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.intersection(Geometr
y, Geometry)

Returns a Geometry that is the set
intersection of the two geometries.

OGC SF

35

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.difference(Geometry,
Geometry)

Returns a Geometry that is the closure of
the set difference of the two geometries.

OGC SF

Spatial.union(Geometry,
Geometry)

Returns a Geometry that is the set union
of the two geometries.

OGC SF

Spatial.symDifference(Geom
etry, Geometry)

Returns a Geometry that is the closure of
the set symmetric difference of the two
geometries.

OGC SF

Spatial.buffer(Geometry,
Double)

Returns as Geometry defined by buffering
a distance around the Geometry.

OGC SF

Spatial.convexHull(Geometr
y)

Returns a Geometry that is the convex
hull of the Geometry.

OGC SF

[1] These functions are currently not implemented in MySQL. They may appear in future releases.

Test whether the bounding box of one geometry intersects the bounding box of another

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

[1] Oracle does not allow boolean expressions in the SELECT-list.

PostGIS Spatial Operators

 These functions are only supported on PostGIS.

Method Description Res
ult

PostGIS.bboxOverlapsLeft(Geometry,
Geometry)

The PostGIS &< operator returns TRUE if the bounding
box of the first Geometry overlaps or is to the left of
second Geometry’s bounding box

PostGIS.bboxOverlapsRight(Geometr
y, Geometry)

The PostGIS &< operator returns TRUE if the bounding
box of the first Geometry overlaps or is to the right of
second Geometry’s bounding box

36

Method Description Res
ult

PostGIS.bboxLeft(Geometry,
Geometry)

The PostGIS << operator returns TRUE if the bounding
box of the first Geometry overlaps or is strictly to the
left of second Geometry’s bounding box

PostGIS.bboxRight(Geometry,
Geometry)

The PostGIS << operator returns TRUE if the bounding
box of the first Geometry overlaps or is strictly to the
right of second Geometry’s bounding box

PostGIS.bboxOverlapsBelow(Geometr
y, Geometry)

The PostGIS &<@ operator returns TRUE if the
bounding box of the first Geometry overlaps or is
below second Geometry’s bounding box

PostGIS.bboxOverlapsAbove(Geometr
y, Geometry)

The PostGIS |&< operator returns TRUE if the
bounding box of the first Geometry overlaps or is
above second Geometry’s bounding box

PostGIS.bboxBelow(Geometry,
Geometry)

The PostGIS <<| operator returns TRUE if the
bounding box of the first Geometry is strictly below
second Geometry’s bounding box

PostGIS.bboxAbove(Geometry,
Geometry)

The PostGIS |<< operator returns TRUE if the
bounding box of the first Geometry is strictly above
second Geometry’s bounding box

PostGIS.sameAs(Geometry,
Geometry)

The PostGIS ~= operator returns TRUE if the two
geometries are vertex-by-vertex equal.

PostGIS.bboxWithin(Geometry,
Geometry)

The PostGIS @ operator returns TRUE if the bounding
box of the first Geometry overlaps or is completely
contained by second Geometry’s bounding box

PostGIS.bboxContains(Geometry,
Geometry)

The PostGIS ~ operator returns TRUE if the bounding
box of the first Geometry completely contains second
Geometry’s bounding box

MySQL specific Functions for Testing Spatial Relationships between
Minimal Bounding Boxes

 These functions are only supported on MySQL

Method Desription Res
ult

MySQL.mbrEqual(Geometry,
Geometry)

MySQL.mbrDisjoint(Geometry,
Geometry)

MySQL.mbrIntersects(Geometry,
Geometry)

37

Method Desription Res
ult

MySQL.mbrTouches(Geometry,
Geometry)

MySQL.mbrWithin(Geometry,
Geometry)

MySQL.mbrContains(Geometry,
Geometry)

MySQL.mbrOverlaps(Geometry,
Geometry)

Oracle specific Functions for Constructing SDO_GEOMETRY types

 These functions are only supported on Oracle Geospatial.

Method Desription

Oracle.sdo_geometry(Integer gtype,
Integer srid, SDO_POINT point,
SDO_ELEM_INFO_ARRAY elem_info,
SDO_ORDINATE_ARRAY ordinates)

Creates a SDO_GEOMETRY geometry from the passed
geometry type, srid, point, element infos and ordinates.

Oracle.sdo_point_type(Double x, Double
y, Double z)

Creates a SDO_POINT geometry from the passed
ordinates.

Oracle.sdo_elem_info_array(String
numbers)

Creates a SDO_ELEM_INFO_ARRAY from the passed
comma-separeted integers.

Oracle.sdo_ordinate_array(String
ordinates)

Creates a SDO_ORDINATE_ARRAY from the passed
comma-separeted doubles.

Examples

The following sections provide some examples of what can be done using spatial methods in JPQL
queries. In the examples we use a class from the test suite. Here’s the source code for reference:

38

package mydomain.samples.pggeometry;

import org.postgis.LineString;

public class SampleLineString
{
 private long id;
 private String name;
 private LineString geom;

 public SampleLineString(long id, String name, LineString lineString)
 {
 this.id = id;
 this.name = name;
 this.geom = lineString;
 }

 public long getId()
 {
 return id;
 }

}

<entity-mappings>
 <package>mydomain.samples.pggeometry</package>

 <entity class="mydomain.samples.pggeometry.SampleLineString">
 <extension vendor-name="datanucleus" key="spatial-dimension" value="2"/>
 <extension vendor-name="datanucleus" key="spatial-srid" value="4326"/>
 <attributes>
 <id name="id"/>
 <basic name="name"/>
 <basic name="geom">
 <extension vendor-name="datanucleus" key="mapping" value="no-
userdata"/> [2]
 </basic>
 </attributes>
 </entity>
</entity-mappings>

Example 1 - Spatial Function in the Filter of a Query

This example shows how to use spatial functions in the filter of a query. The query returns a list of
_SampleLineString_s whose line string has a length less than the given limit.

39

Query q = em.createQuery("SELECT s FROM SampleLineString s WHERE geom IS NOT NULL AND
Spatial.length(geom) < :limit");
q.setParameter("limit", new Double(100.0));
List list = q.getResultList();

Example 2 - Spatial Function in the Result Part of a Query

This time we use a spatial function in the result part of a query. The query returns the length of the
line string from the selected SampleLineString

q = em.createQuery("SELECT Spatial.pointN(geom, 2) FROM SampleLineString s WHERE id ==
:id");
q.setParameter("id", new Long(1001));
Geometry point = q.getSingleResult();

Example 3 - Nested Functions

You may want to use nested functions in your query. This example shows how to do that. The query
returns a list of _SampleLineString_s, whose end point spatially equals a given point.

Point point = new Point("SRID=4326;POINT(110 45)");
Query q = em.createQuery("SELECT s FROM SampleLineString s WHERE geom IS NOT NULL AND
Spatial.equals(Spatial.endPoint(geom), :point)");
q.setParameter("point", point);
List list = q.getResultList();

40

Criteria
In JPA there is a query API referred to as "criteria", that broadly mirrors the JPQL query syntax.
This is really an API allowing the construction of queries expression by expression, and optionally
making it type-safe. It provides two ways of specifying a field/property. The first way is using
Strings, and the second using a Static MetaModel. The advantage of the Static MetaModel is that it
means that your queries are refactorable if you rename a field. Each example will be expressed in
both ways where appropriate so you can see the difference.

Creating a Criteria query
To use the JPA Criteria API, firstly you need to create a CriteriaQuery object for the candidate in
question, and set the candidate, its alias, and the result to be of the candidate type

CriteriaBuilder cb = emf.getCriteriaBuilder();
CriteriaQuery<Person> crit = cb.createQuery(Person.class);
Root<Person> candidateRoot = crit.from(Person.class);
candidateRoot.alias("p");

crit.select(candidateRoot);

So what we have there equates to

SELECT p FROM mydomain.Person p

For a complete list of all methods available on CriteriaBuilder, refer to

For a complete list of all methods available on CriteriaQuery, refer to

JPQL equivalent of the Criteria query

If you ever want to know what is the equivalent JPQL string-based query for your Criteria, just
print out criteriaQuery.toString(). This is not part of the JPA spec, but something that we feel is very
useful so is provided as a DataNucleus vendor extension. So, for example, the criteria query above
would result in the following from crit.toString()

SELECT p FROM mydomain.Person p

Criteria API : Result clause
The basic Criteria query above is fine, but you may want to define a result other than the candidate.
To do this we need to use the Criteria API.

41

#metamodel
http://www.datanucleus.org/javadocs/javax.persistence/2.1/javax/persistence/criteria/CriteriaBuilder.html
http://www.datanucleus.org/javadocs/javax.persistence/2.1/javax/persistence/criteria/CriteriaQuery.html

Path nameField = candidateRoot.get("name");
crit.select(nameField);

which equates to

SELECT p.name

Note that here we accessed a field by its name (as a String). We could easily have accessed it via the
Criteria MetaModel too.

Criteria API : From clause joins
The basic Criteria query above is fine, but you may want to define some explicit joins. To do this we
need to use the Criteria API.

Metamodel model = emf.getMetamodel();
ManagedType personType = model.type(Person.class);
Attribute addressAttr = personType.getAttribute("address");
Join addressJoin = candidateRoot.join((SingularAttribute)addressAttr);
addressJoin.alias("a");

which equates to

FROM mydomain.Person p JOIN p.address a

Criteria API : Filter
The basic Criteria query above is fine, but in the majority of cases we want to define a filter. To do
this we need to use the Criteria API.

// String-based:
Predicate nameEquals = cb.equal(candidateRoot.get("name"), "First");
crit.where(nameEquals);

// MetaModel-based:
Predicate nameEquals = cb.equal(candidateRoot.get(Person_.name), "First");
crit.where(nameEquals);

You can also invoke methods, so a slight variation on this clause would be

42

#metamodel

// String-based:
Predicate nameUpperEquals = cb.equal(cb.upper(candidateRoot.get("name")), "FIRST");

// MetaModel-based:
Predicate nameUpperEquals = cb.equal(cb.upper(candidateRoot.get(Person_.name)),
"FIRST");

which equates to

WHERE (UPPER(p.name) = 'FIRST')

Criteria API : Ordering
The basic Criteria query above is fine, but in many cases we want to define ordering. To do this we
need to use the Criteria API.

// String-based:
Order orderFirstName = cb.desc(candidateRoot.get("name"));
crit.orderBy(orderFirstName);

// MetaModel-based:
Order orderFirstName = cb.desc(candidateRoot.get(Person_.name));
crit.orderBy(orderFirstName);

which equates to

ORDER BY p.name DESC

Criteria API : Parameters
Another common thing we would want to do is specify input parameters. To do this we need to use
the Criteria API. Let’s take an example of a filter with parameters.

// String-based:
ParameterExpression param1 = cb.parameter(String.class, "myParam1");
Predicate nameEquals = cb.equal(candidateRoot.get("name"), param1);
crit.where(nameEquals);

// MetaModel-based:
ParameterExpression param1 = cb.parameter(String.class, "myParam1");
Predicate nameEquals = cb.equal(candidateRoot.get(Person_.name), param1);
crit.where(nameEquals);

43

which equates to

WHERE (p.name = :myParam)

Don’t forget to set the value of the parameters before executing the query!

Criteria API : Subqueries
You can also make use of subqueries with Criteria.

In this example we are going to search for all Employee(s) where the salary is below the average of
all Employees. In JPQL this would be written as

SELECT e FROM Employee e WHERE (e.salary < SELECT AVG(e2.salary) FROM Employee e2")

With Criteria we do it like this. Firstly we create the outer query, then create the subquery, and then
place the subquery in the outer query.

CriteriaQuery<Employee> crit = cb.createQuery(Employee.class);
Root<Employee> candidate = crit.from(Employee.class);
candidate.alias("e");
crit.select(candidate);

// Create subquery for the average salary of all Employees
Subquery<Double> subCrit = crit.subquery(Double.class);
Root<Employee> subCandidate = subCrit.from(Employee.class);
subCandidate.alias("e2");
Path e2SalaryField = subCandidate.get("salary");
Subquery<Double> avgSalary = subCrit.select(cb.avg(e2SalaryField));

// Add WHERE clause to outer query, linking to subquery
Path eSalaryField = candidate.get("salary");
Predicate lessThanAvgSalary = cb.lessThan(eSalaryField, avgSalary);
crit.where(lessThanAvgSalary);

Criteria API : Result as Tuple
You sometimes need to define a result for a query. You can define a result class just like with
normal JPQL, but a special case is where you don’t have a particular result class and want to use the
built-in JPA standard Tuple class.

CriteriaQuery<Tuple> crit = cb.createTupleQuery();

44

Executing a Criteria query
Ok, so we’ve seen how to generate a Criteria query. So how can we execute it ? This is simple;
convert it into a standard JPA query, set any parameter values and execute it.

Query query = em.createQuery(crit);
List<Person> results = query.getResultList();

Criteria API : UPDATE query
So the previous examples concentrated on SELECT queries. Let’s now do an UPDATE

// String-based:
CriteriaUpdate<Person> crit = qb.createCriteriaUpdate(Person.class);
Root<Person> candidate = crit.from(Person.class);
candidate.alias("p");
crit.set(candidate.get("firstName"), "Freddie");
Predicate teamName = qb.equal(candidate.get("firstName"), "Fred");
crit.where(teamName);
Query q = em.createQuery(crit);
int num = q.executeUpdate();

// MetaModel-based:
CriteriaUpdate<Person> crit = qb.createCriteriaUpdate(Person.class);
Root<Person> candidate = crit.from(Person.class);
candidate.alias("p");
crit.set(candidate.get(Person_.firstName), "Freddie");
Predicate teamName = qb.equal(candidate.get(Person.firstName), "Fred");
crit.where(teamName);
Query q = em.createQuery(crit);
int num = q.executeUpdate();

which equates to

UPDATE Person p SET p.firstName = 'Freddie' WHERE p.firstName = 'Fred'

Criteria API : DELETE query
So the previous examples concentrated on SELECT queries. Let’s now do a DELETE

45

// String-based:
CriteriaDelete<Person> crit = qb.createCriteriaDelete(Person.class);
Root<Person> candidate = crit.from(Person.class);
candidate.alias("p");
Predicate teamName = qb.equal(candidate.get("firstName"), "Fred");
crit.where(teamName);
Query q = em.createQuery(crit);
int num = q.executeUpdate();

// MetaModel-based:
CriteriaDelete<Person> crit = qb.createCriteriaDelete(Person.class);
Root<Person> candidate = crit.from(Person.class);
candidate.alias("p");
Predicate teamName = qb.equal(candidate.get(Person.firstName), "Fred");
crit.where(teamName);
Query q = em.createQuery(crit);
int num = q.executeUpdate();

which equates to

DELETE FROM Person p WHERE p.firstName = 'Fred'

Static MetaModel
As we mentioned at the start of this section, there is a Static MetaModel allowing refactorability. In
JPA the MetaModel is a static metamodel of generated classes that mirror the applications entities
and have persistable fields marked as public and static so that they can be accessed when
generating the queries. In the examples above you saw reference to a class with name with suffix
"_". This is a (static) metamodel class. It is defined below.

The JPA spec contains the following description of the static metamodel.

For every managed class in the persistence unit, a corresponding metamodel class is produced as
follows:

• For each managed class X in package p, a metamodel class X_ in package p is created.

• The name of the metamodel class is derived from the name of the managed class by appending
"_" to the name of the managed class.

• The metamodel class X_ must be annotated with the javax.persistence.StaticMetamodel
annotation

• If class X extends another class S, where S is the most derived managed class (i.e., entity or
mapped superclass) extended by X, then class X_ must extend class S_, where S_ is the meta-
model class created for S.

• For every persistent non-collection-valued attribute y declared by class X, where the type of y is
Y, the metamodel class must contain a declaration as follows:

46

public static volatile SingularAttribute<X, Y> y;

• For every persistent collection-valued attribute z declared by class X, where the element type of
z is Z, the metamodel class must contain a declaration as follows:

• if the collection type of z is java.util.Collection, then

public static volatile CollectionAttribute<X, Z> z;

• if the collection type of z is java.util.Set, then

public static volatile SetAttribute<X, Z> z;

• if the collection type of z is java.util.List, then

public static volatile ListAttribute<X, Z> z;

• if the collection type of z is java.util.Map, then

public static volatile MapAttribute<X, K, Z> z;

where K is the type of the key of the map in class X

Let’s take an example, for the following class

package org.datanucleus.samples.jpa2.metamodel;

import java.util.*;
import javax.persistence.*;

@Entity
public class Person
{
 @Id
 long id;

 String name;

 @OneToMany
 List<Address> addresses;
}

the static metamodel class (generated by datanucleus-jpa-query) will be

47

package org.datanucleus.samples.jpa2.metamodel;

import javax.persistence.metamodel.*;

@StaticMetamodel(Person.class)
public class Person_
{
 public static volatile SingularAttribute<Person, Long> id;
 public static volatile SingularAttribute<Person, String> name;
 public static volatile ListAttribute<Person, Address> addresses;
}

So how do we generate this metamodel definition for our query classes? DataNucleus provides
an annotation processor in the jar datanucleus-jpa-query that can be used when compiling your
model classes to generate the static metamodel classes. What this does is when the compile is
invoked, all classes that have persistence annotations will be passed to the annotation processor
and a Java file generated for its metamodel. Then all classes (original + metamodel) are compiled.

To enable this in Maven you would need the above jar, plus javax.persistence.jar to be in the
CLASSPATH at compile

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
</plugin>

To enable this in Eclipse you would need to do the following

• Go to Java Compiler and make sure the compiler compliance level is 1.7 or above (needed for DN
5+ anyway)

• Go to Java Compiler → Annotation Processing and enable the project specific settings and enable
annotation processing

• Go to Java Compiler → Annotation Processing → Factory Path, enable the project specific settings
and then add the following jars to the list: datanucleus-jpa-query.jar, javax.persistence.jar

48

Native Queries
The JPA specification defines its interpretation of native queries, for selecting objects from the
datastore. To provide a simple example for RDBMS (i.e using SQL), this is what you would do

Query q = em.createNativeQuery("SELECT p.id, o.firstName, o.lastName FROM Person p,
Job j WHERE (p.job = j.id) AND j.name = 'Cleaner'");
List results = (List)q.getResultsList();

This finds all "Person" objects that do the job of "Cleaner". The syntax chosen has to be runnable on
the RDBMS that you are using (and since SQL is anything but "standard" you will likely have to
change your query when moving to another datastore).

Input Parameters
In queries it is convenient to pass in parameters so we don’t have to define the same query for
different values. Here’s an example

// Numbered Parameters :
Query q = em.createQuery("SELECT p.id FROM Person p WHERE p.lastName = ?1 AND
p.firstName = ?2");
q.setParameter(1, theSurname).setParameter(2, theForename);

So we have parameters that are prefixed by ? (question mark) and are numbered starting at 1. We
then use the numbered position when calling Query.setParameter(). This is known as numbered
parameters. With JPA native queries we can’t use named parameters officially.

DataNucleus also actually supports use of named parameters where you assign names just like in
JPQL. This is not defined by the JPA specification so dont expect other JPA implementations to
support it. Let’s take the previous example and rewrite it using named parameters, like this

// Named Parameters :
Query q = em.createQuery("SELECT p.id FROM Person p WHERE p.lastName = :firstParam AND
p.firstName = :otherParam");
q.setParameter("firstParam", theSurname).setParameter("otherParam", theForename);

Range of Results
With SQL you can select the range of results to be returned. For example if you have a web page
and you are paginating the results of some search, you may want to get the results from a query in
blocks of 20 say, with results 0 to 19 on the first page, then 20 to 39, etc. You can facilitate this as
follows

49

Query q = em.createNativeQuery("SELECT p.id FROM Person p WHERE p.age > 20");
q.setFirstResult(0).setMaxResults(20);

So with this query we get results 0 to 19 inclusive.

Query Execution
There are two ways to execute a native query. When you know it will return 0 or 1 results you call

Object result = query.getSingleResult();

If however you know that the query will return multiple results, or you just don’t know then you
would call

List results = query.getResultList();

SQL Result Definition
By default, if you simply execute a native query and don’t specify the result mapping, then when
you execute getResultList() each row of the results will be an Object array. You can however define
how the results are mapped to some result class for example. Let’s give some examples of what you
can do. If we have the following entities

50

@Entity
@Table(name="LOGIN")
public class Login
{
 @Id
 private long id;

 private String userName;
 private String password;

 public Login(String user, String pwd)
 {
 ...
 }
}

@Entity
@Table(name="LOGINACCOUNT")
public class LoginAccount
{
 @Id
 private long id;

 private String firstName;
 private String lastName;

 @OneToOne(cascade={CascadeType.MERGE, CascadeType.PERSIST}, orphanRemoval=true)
 @JoinColumn(name="LOGIN_ID")
 private Login login;

 public LoginAccount(long id, String firstName, String lastName)
 {
 ...
 }
}

The first thing to do is to select both LOGIN and LOGINACCOUNT columns in a single call, and
return instances of the 2 entities. So we define the following in the LoginAccount class

@SqlResultSetMappings({
 @SqlResultSetMapping(name="LOGIN_PLUS_ACCOUNT",
 entities={@EntityResult(entityClass=LoginAccount.class), @EntityResult
(entityClass=Login.class)})

and we now execute the native query as

51

List<Object[]> result = em.createNativeQuery("SELECT P.ID, P.FIRSTNAME, P.LASTNAME,
P.LOGIN_ID, L.ID, L.USERNAME, L.PASSWORD " +
 "FROM JPA_AN_LOGINACCOUNT P, JPA_AN_LOGIN L", "AN_LOGIN_PLUS_ACCOUNT"
).getResultList();
Iterator iter = result.iterator();
while (iter.hasNext())
{
 Object[] row = iter.next();
 LoginAccount acct = (LoginAccount)obj[0];
 Login login = (Login)obj[1];
 ...
}

Next thing to try is the same as above, returning 2 entities for a row, but here we explicitly define
the mapping of SQL column to the constructor parameter.

@SqlResultSetMapping(name="AN_LOGIN_PLUS_ACCOUNT_ALIAS", entities={
 @EntityResult(entityClass=LoginAccount.class, fields={@FieldResult(name
="id", column="THISID"), @FieldResult(name="firstName", column="FN")}),
 @EntityResult(entityClass=Login.class, fields={@FieldResult(name="id",
column="IDLOGIN"), @FieldResult(name="userName", column="UN")})
 })

and we now execute the native query as

List<Object[]> result = em.createNativeQuery("SELECT P.ID AS THISID, P.FIRSTNAME AS
FN, P.LASTNAME, P.LOGIN_ID, " +
 "L.ID AS IDLOGIN, L.USERNAME AS UN, L.PASSWORD FROM JPA_AN_LOGINACCOUNT P,
JPA_AN_LOGIN L", "AN_LOGIN_PLUS_ACCOUNT_ALIAS").getResultList();
Iterator iter = result.iterator();
while (iter.hasNext())
{
 Object[] row = iter.next();
 LoginAccount acct = (LoginAccount)obj[0];
 Login login = (Login)obj[1];
 ...
}

For our final example we will return each row as a non-entity class, defining how the columns map
to the constructor for the result class.

@SqlResultSetMapping(name="AN_LOGIN_PLUS_ACCOUNT_CONSTRUCTOR", classes={
 @ConstructorResult(targetClass=LoginAccountComplete.class,
 columns={@ColumnResult(name="FN"), @ColumnResult(name="LN"),
@ColumnResult(name="USER"), @ColumnResult(name="PWD")}),
 })

52

with non-entity result class defined as

public class LoginAccountComplete
{
 String firstName;
 String lastName;
 String userName;
 String password;

 public LoginAccountComplete(String firstName, String lastName, String userName,
String password)
 {
 ...
 }
 ...
}

and we execute the query like this

List result = em.createNativeQuery("SELECT P.FIRSTNAME AS FN, P.LASTNAME AS LN,
L.USERNAME AS USER, L.PASSWORD AS PWD FROM " +
 "JPA_AN_LOGINACCOUNT P, JPA_AN_LOGIN L","AN_LOGIN_PLUS_ACCOUNT_CONSTRUCTOR"
).getResultList();
Iterator iter = result.iterator();
while (iter.hasNext())
{
 LoginAccountComplete acctCmp = (LoginAccountComplete)iter.next();
 ...
}

Named Native Query
With the JPA API you can either define a query at runtime, or define it in the MetaData/annotations
for a class and refer to it at runtime using a symbolic name. This second option means that the
method of invoking the query at runtime is much simplified. To demonstrate the process, lets say
we have a class called Product (something to sell in a store). We define the JPA Meta-Data for the
class in the normal way, but we also have some query that we know we will require, so we define
the following in the Meta-Data.

<entity class="Product">
 ...
 <named-native-query name="PriceBelowValue"><![CDATA[
 SELECT NAME FROM PRODUCT WHERE PRICE < ?1
]]></named-native-query>
</entity>

53

or using annotations

@Entity
@NamedNativeQuery(name="PriceBelowValue", query="SELECT NAME FROM PRODUCT WHERE PRICE
< ?1")
public class Product {...}

So here we have a native query that will return the names of all Products that have a price less than
a specified value. This leaves us the flexibility to specify the value at runtime. So here we run our
named native query, asking for the names of all Products with price below 20 euros.

Query query = em.createNamedQuery("PriceBelowValue");
List results = query.setParameter(1, new Double(20.0)).getResultList();

54

Stored Procedures
The JPA 2.1 specification adds support for calling stored procedures through its API. It allows some
flexibility in the type of stored procedure being used, supporting IN/OUT/INOUT parameters as well
as result sets being returned. Obviously if a datastore does not support stored procedures then this
functionality will not apply.

You start off by creating a stored procedure query, like this, referencing the stored procedure name
in the datastore.

StoredProcedureQuery spq = em.createStoredProcedureQuery("PERSON_SP_1");

You should familiarise yourself with the StoredProcedureQuery API.

If we have any parameters in this stored procedure we need to register them, for example

spq.registerStoredProcedureParameter("PARAM1", String.class, ParameterMode.IN);
spq.registerStoredProcedureParameter("PARAM2", Integer.class, ParameterMode.OUT);

If you have any result class, or result set mapping then you can specify those in the
createStoredProcedureQuery call. Now we are ready to execute the query and access the results.

Simple execution, returning a result set
A common form of stored procedure will simply return a single result set. You execute such a
procedure as follows

List results = spq.getResultList();

or if expecting a single result, then

Object result = spq.getSingleResult();

Simple execution, returning output parameters
A common form of stored procedure will simply return output parameter(s). You execute such a
procedure as follows

spq.execute();
Object paramVal = spq.getOutputParameterValue("PARAM2");

or you can also access the output parameters via position (if specified by position).

55

http://www.datanucleus.org:15080/javadocs/javax.persistence/2.1/javax/persistence/StoredProcedureQuery.html

Generalised execution, for multiple result sets
A more complicated, yet general, form of execution of the stored procedure is as follows

boolean isResultSet = spq.execute(); // returns true when we have a result set from
the proc
List results1 = spq.getResultList(); // get the first result set
if (spq.hasMoreResults())
{
 List results2 = spq.getResultList(); // get the second result set
}

So the user can get hold of multiple result sets returned by their stored procedure.

Named Stored Procedure Queries
Just as with normal queries, you can also register a stored procedure query at development time
and then access it via name from the EntityManager. So we define one like this (not important on
which class it is defined)

@NamedStoredProcedureQuery(name="myTestProc", procedureName="MY_TEST_SP_1",
 parameters={@StoredProcedureParameter(name="PARAM1", type=String.class, mode
=ParameterMode.IN})

@Entity
public class MyClass {...}

and then create the query from the EntityManager

StoredProcedureQuery spq = em.createNamedStoredProcedureQuery("myTestProc");

56

Query Cache

JPA doesn’t currently define a mechanism for caching of queries. DataNucleus provides 3 levels of
caching

• Generic Compilation : when a query is compiled it is initially compiled generically into
expression trees. This generic compilation is independent of the datastore in use, so can be used
for other datastores. This can be cached.

• Datastore Compilation : after a query is compiled into expression trees (above) it is then
converted into the native language of the datastore in use. For example with RDBMS, it is
converted into SQL. This can be cached

• Results : when a query is run and returns objects of the candidate type, you can cache the
identities of the result objects.

Generic Query Compilation Cache
This cache is by default set to soft, meaning that the generic query compilation is cached using soft
references. This is set using the persistence property datanucleus.cache.queryCompilation.type.
You can also set it to strong meaning that strong references are used, or weak meaning that weak
references are used, or finally to none meaning that there is no caching of generic query
compilation information

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false.

Datastore Query Compilation Cache
This cache is by default set to soft, meaning that the datastore query compilation is cached using
soft references. This is set using the persistence property
datanucleus.cache.queryCompilationDatastore.type. You can also set it to strong meaning that
strong references are used, or weak meaning that weak references are used, or finally to none
meaning that there is no caching of datastore-specific query compilation information

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false. As a finer degree of control,
where cached results are used, you can omit the validation of object existence in the datastore by
setting the query extension datanucleus.query.resultCache.validateObjects.

57

#cache_genericcompilation
#cache_datastorecompilation
#cache_results

Query Results Cache
This cache is by default set to soft, meaning that the datastore query results are cached using soft
references. This is set using the persistence property datanucleus.cache.queryResult.type. You
can also set it to strong meaning that strong references are used, or weak meaning that weak
references are used, or finally to none meaning that there is no caching of query results
information. You can also specify datanucleus.cache.queryResult.cacheName to define the name
of the cache used for the query results cache.

You can turn caching on/off (default = off) on a query-by-query basis by specifying the query
extension datanucleus.query.results.cached as true/false.

Obviously with a cache of query results, you don’t necessarily want to retain this cached over a
long period. In this situation you can evict results from the cache like this.

import org.datanucleus.api.jpa.JPAQueryCache;
import org.datanucleus.api.jpa.JPAEntityManagerFactory;

...
JPAQueryCache cache = ((JPAEntityManagerFactory)emf).getQueryCache();

cache.evict(query);

which evicts the results of the specific query. The JPAQueryCache has more options available should
you need them …

58

http://www.datanucleus.org/javadocs/api.jpa/latest/org/datanucleus/api/jpa/JPAQueryCache.html

	JPA Query Guide (v5.0)
	Table of Contents
	Query API
	setFirstResult(), setMaxResults()
	setHint()
	setParameter()
	getResultList()
	getSingleResult()
	executeUpdate()
	setFlushMode()
	setLockMode()
	Large Result Sets : Loading Results at Commit()
	Result Set : Caching of Results
	Large Result Sets : Size
	RDBMS : Result Set Type
	RDBMS : Result Set Control

	JPQL
	SELECT Syntax
	FROM Clause
	WHERE clause (filter)
	GROUP BY/HAVING clauses
	ORDER BY clause
	Fetched Fields
	Fields/Properties
	Operators
	Literals
	Parameters
	CASE expressions
	JPQL Functions
	Collection Fields
	Map Fields
	Subqueries
	Specify candidates to query over
	Range of Results
	Query Result
	Query Execution
	JPQL In-Memory queries
	Named Query
	Saving a Query as a Named Query
	JPQL Strictness
	JPQL : SQL Generation for RDBMS
	JPQL DELETE Queries
	JPQL UPDATE Queries
	JPQL BNF Notation
	Geospatial Functions

	Criteria
	Creating a Criteria query
	JPQL equivalent of the Criteria query
	Criteria API : Result clause
	Criteria API : From clause joins
	Criteria API : Filter
	Criteria API : Ordering
	Criteria API : Parameters
	Criteria API : Subqueries
	Criteria API : Result as Tuple
	Executing a Criteria query
	Criteria API : UPDATE query
	Criteria API : DELETE query
	Static MetaModel

	Native Queries
	Input Parameters
	Range of Results
	Query Execution
	SQL Result Definition
	Named Native Query

	Stored Procedures
	Simple execution, returning a result set
	Simple execution, returning output parameters
	Generalised execution, for multiple result sets
	Named Stored Procedure Queries

	Query Cache
	Generic Query Compilation Cache
	Datastore Query Compilation Cache
	Query Results Cache

