@ DataNucleus

S

JDO Mapping Guide (v5.2)

Table of Contents

ClaSSES. . o o d... ..
Persistence Capable Classes 4. .
Persistence-Aware ClasSesottt 5. .
Read-Only Classes . . .ot 5 ...,
Detachable Classes. 6
SOt DIt . . . H.....

NIt ANCE . . 8.....
DISCIIMINAIOr . . . oo Q.....
NeW Table .. d0o....
Subclass table d2.
Superclass table 3.
Complete table é6.
Retrieval of inherited Objects 7.

o 1= 01111/ do
Datastore ldentity o .
Application Identity 22 .
Nondurable [dentity 28
Compound ldentity Relationships 28 .

VBISIONING . .ottt e 40 .
Versioning using a surrogate ColUMNt e e e 40. .
Versioning using a field/property of the class 40 .

AUAIING 42 .
Defining the Current USer é43.

FIeldS/ PrOpErtieS . . .o o a4. ...
Persistent Fields a4. . ..
PersiSteNt Properies . ..o o 44 .
Overriding Superclass Field/Property MetaData e 45 .
Making a field/property non-persistent 46.
Making a field/property read-only 46 .

Fleld Ty PES .« . oo A8 .
Primitive and java.lang Types &49.

JAVA AN By PES . . o 0.
Temporal Types (java.util, java.sql, java.time, Jodatime) 60.
ColleCtioN/Map tYPES . . . ottt h2 .
ENUMS .« . o4
Geospatial TYPES . ..ttt 5.
Other Ty PSS o o 61.
AT S . o 62 .

Generic Type Variables 63. ..

JDO Attribute CONVEIEIS o 64. ..
Types extending Collection/Map e 67 . .
TypeConverters (DataNucleus Internals) e 68. .
ColUMN AdaPEErS . . . 69. ...
Value GENEIAtION 0. ...
= UL gl
SEOUEBICE . . v it e it et e e e e e dl. ...
0 =] 1 2. ...
1 Tod 1T 4= o ga. ...
UUI-SEING e e e 6
UUIO-NEX L e e &6
datastore-Ulid-NeX . ..o el ...
UUI oo e @8
UUI-0D Gt . oo e &9
AU . . #9.
M S M . . .o e 80....
timeStamP-Value . .. 81 ...
MK o o ettt e e e e e e e e 8L
Standalone ID generation 82. ..
1-1 RelAtiONS . .ot 84....
Unidirectional ForeignKey ... 84. ..
Unidirectional with JoinTable 85 ..
Bidirectional ForeignKey e 87. ..
Bidirectional JoinTable 88. ..
1-N REIAtONS . .o 89....
equals() and hashCode()ttt e e Q0. ..
Ordering of Elements L0...
Collection<PC> Unidirectional JoinTable e o1..
Collection<PC> Unidirectional FK A3 ..
Collection<PC> Bidirectional JoinTable o4. .
Collection<PC> Bidirectional FK ar ..
Collection<PC> via Shared JoinTable o8. .
Collection<PC> via Shared FK ol .
Collection<Simple> via JoinTable e 402 .
Collection<Simple> using AttributeConverter via column £04
Map<PC,PC>using Join Table e d05. .
Map<Simple,PC>using Join Table e 407 .
Map<Simple,PC> Unidirectional FK (key stored invalue) 09
Map<Simple,PC> Unidirectional FK (key stored invalue) 10

Map<Simple, Simple>using Join Table dll.

Map<Simple, Simple> using AttributeConverter via column 412

Map<PC,Simple>using Join Table 413 .
Map<PC,Simple> Unidirectional FK (value stored inkey) i dl4
N-L RelAtiONSo di7. ..
Unidirectional ForeignKey e dl7. .
Unidirectional JoinTable e d18. .
Bidirectional ForeignKey d20. .
Bidirectional JoinTable d20..
M-N REIAtIONS . . d21. ..
equals() and hashCode() i e e d22. .

USING S . e e d22. ..
UsiNg Ordered ListS e A24 ..
Using indexed ListS e A25 ..
USING VA . oot e d27. ..
AT S .« et 29 ...
SiNgle ColUMN AITaY S . .ottt e e e e e d29..
Serialised ATy S . . oo d30. ..
Arrays persisted into Join Tables e A31.
Arrays persisted using Foreign-Keys ... e d32.
Simple array stored in jointable A34 .
1= 7= Lo A35 ...
1-1 Interface Relation d36. .
1-N Interface Relation é38..
Dynamic Schema Updates i e e e d39. .
JavaLlang.Ob eCt . .. d40. ..
1-1/N-1 Object Relation e d40. .
1-N Object Relation e 442 ..
Serialised ObJeCtS a2z ..
Embedded Fields dada. . .
Embedded class StruCIUre d45. .
Embedding persistable objects (1-1) d45.
Embedding nested persistable objects d49.
Embedding Collection Elements e AB2 .
Embedding Map Keys/Values e édbe. .
Serialised Fields de0. ..
Serialised CollECtONS 60 . .
Serialised Collection EIements el .
Serialised Maps e de62. ..
Serialised Map Keys/Values d63..
Serialised persistable Fields d64. .

Serialised Reference (Interface/Object) Fields i £.65

Serialised Field to Local File d66. .

Datastore SChemMa é6s. ..
Tables and ColUMN NAMES d68. .
Column nullability and default values e d73.
COlUMN Y PES oo e e d74. ..
Columns with no field in the class 80 .
Field/Column Position in a Table £80Q .
INdeX CONSIIAINIS . . o o e e e e e 81 ..
Unique CoNStraintS . ..o A83 ..
Foreign Key CoNStraints o e d84. .
Primary Key CONStraintso e d87..
RDBMS VWS . .ottt e d87. ..
Secondary Tables e dol ..

Datastore [dentifierSo 493 ..

To implement a persistence layer with JDO you firstly need to map the classes
and fields/properties that are involved in the persistence process to how they
are represented in the datastore. This can be as simple as marking the classes as
@PersistenceCapable and defaulting the datastore definition, or you can
configure down to the fine detail of precisely what schema it maps on to. The
following sections deal with the many options available for using metadata to
map your persistable classes.

When mapping a class for JDO you make use of metadata , and this metadata can
be Java annotations, or can be XML metadata, or a mixture of both, or you could
even define it using a dynamic API . This is very much down to your own
personal preference but we try to present both ways here.

We advise trying to keep schema information out of annotations,

| so that you avoid tying compiled code to a specific datastore. That
way you retain datastore-independence. This may not be a
concern for your project however.

Whilst the JDO spec provides for you to specify your mapping
information using JDO metadata (annotations, or JDO/ORM XML

" Metadata, or via the Metadata API), it also allows you the option
of using JPA metadata (annotations, orm.xml). This is provided as a
way of easily migrating across to JDO from JPA, for example.
Consult the DataNucleus JPA mappings docs for details.

In terms of the relative priority of annotations, JDO XML and ORM XML
metadata, the following figure highlights the process

metadata_api.html
../jpa/mapping.html

Annotations MetaData API
@FersistenceCapable PackageMetadata pmd =
public class MyClass md .newPackageMetadata("mydomain®) ;
{ ClassMetadata cmd =
@PrimaryKey pmd.newClassMetadata("MyClass") ;
long id;
}

i)

JDO XML MetaData

=class name="MyClass"” detachable="true">
=versien strategy="version-number" /=
=field name="1id" primary-key="true"/=

=fclass>

ORM XML MetaData

<orm name="MyClass" table="MY CLASS" schema="SCHEMAl"=
<field name="id" column="MY_ID" /=

<form>
MetaData API

1 PackageMetadata pmd =

md .newPackageMetadata ("mydomain”) ;

ClassMetadata cmd =

pmd. newClassMetadata("MyClass") ;
d
e="true"> |
number" /=
y="true"/>
a
schema="SCHEMAL">

So you can provide the metadata via annotations solely, or via annotations plus
ORM XML Metadata overrides , or via JDO XML Metadata solely, or via JDO XML
Metadata plus ORM XML Metadata overrides , or finally viaa Metadata API .

If you are using XML overrides for ORM, this definition will be merged in to the
base definition (annotations or JDO XML Metadata). Note that you can utilise
annotations for one class, and then JDO XML Metadata for another class should
you so wish.

One further alternative is if you have annotations in your classes, you provide
JDO XML Metadata (package.jdo), and also ORM XML Metadata (package-

annotations.html
annotations.html
metadata_xml.html
metadata_xml.html
metadata_xml.html
metadata_xml.html
metadata_xml.html
metadata_api.html

{mapping}.orm). In this case the annotations are the base representation,
applying overrides from JDO XML Metadata, and then overrides from the ORM
XML Metadata.

When not using the MetaData APl we recommend that you use
either XML or annotations for the basic persistence information,
but always use XML for schema information. This is because it is

! liable to change at deployment time and hence is accessible when
in XML form whereas in annotations you add an extra compile
cycle (and also you may need to deploy to some other datastore at
some point, hence needing a different deployment).

Classes

We have the following types of classes in DataNucleus JDO.

¥ PersistenceCapable - persistable class with full control over its persistence.

¥ PersistenceAware - a class that is not itself persisted, but that needs to access internals of
persistable classes.

JDO imposes very little on classes used within the persistence process so, to a very large degree, you
should design your classes as you would normally do and not design them to fit JDO.

In strict JDO all persistable classes need to have a default constructor . With
DataNucleus JDO this is not necessary, since all classes are enhanced before
persistence and the enhancer adds on a default constructor if one is not defined.

If defining a method toString in a JDO persistable class, be aware that use of a
persistable field will cause the load of that field if the object is managed and is not
yet loaded.

If a JDO persistable class is an element of a Java collection in another entity, you
are advised to define hashCode and equals methods for reliable handling by Java
collections.

Persistence Capable Classes

The first thing to decide when implementing your persistence layer is which classes are to be
persisted. LetOs take a sample class (Hotel) as an example. We can define a class as persistable using
either annotations in the class, or XML metadata. To achieve the above aim we do this

@PersistenceCapable
public class Hotel

{
E
}

or using XML metadata

<class name*Hotel" >

E
</class>

See also :-

¥ MetaData reference for <class> element

¥ Annotations reference for @PersistenceCapable

#persistence_capable
#persistence_aware
metadata_xml.html#class
annotations.html#PersistenceCapable

n If any of your other classes access the fields of these persistable classes
directly then these other classes should be defined as PersistenceAware .

Persistence-Aware Classes

If a class is not itself persistable but it interacts with fields of persistable classes then it should be
marked as Persistence Aware . You do this as follows

@PersistenceAware
public class MyClass

{
E
}

or using XML metadata

<class name=MyClass" persistence-modifier= "persistence-aware" >
E
</class>

See also :-

¥ Annotations reference for @PersistenceAware

Read-Only Classes

‘-’g;_‘Extensinn
You can, if you wish, make a class "read-only". This is a DataNucleus extension and you set it as
follows

import org.datanucleus.api.jdo.annotations.ReadOnly

@PersistenceCapable
@ReadOnly
public class MyClass

{
E
}

or using XML Metadata

annotations.html#PersistenceAware

<class name=MyClass">

E

E <extension vendor-namedatanucleus" key='read-only" value="true" />
</class>

In practical terms this means that at runtime, if you try to persist an object of this type then an
exception will be thrown. You can read objects of this type from the datastore just as you would for
any persistable class

See also :-

¥ Annotations reference for @ReadOnly

Detachable Classes

One of the main things you need to decide for you persistable classes is whether you will be
detaching them from the persistence process for use in a different layer of your application. If you
do want to do this then you need to mark them as detachable, like this

@PersistenceCapablé¢detachable ="true")
public class Hotel

{
E
}

or using XML metadata

<class name*Hotel" detachable="true" >
E
</class>

SoftDelete

‘{?::Extensi on

=

" Applicable to RDBMS, MongoDB, HBase, Cassandra, Neo4j

With standard JDO when you delete an object from persistence it is deleted from the datastore.
DataNucleus provides a useful ability to soft delete objects from persistence. In simple terms, any
persistable types marked for soft deletion handling will have an extra column added to their
datastore table to represent whether the record is soft-deleted. If it is soft deleted then it will not be
visible at runtime thereafter, but will be present in the datastore.

You mark a persistable type for soft deletion handling like this

annotations.html#ReadOnly_Class

import org.datanucleus.api.jdo.annotations.SoftDelete ;

@PersistenceCapable
@SoftDelete
public class Hotel

{
E
}

You could optionally specify the column attribute of the @SoftDelete annotation to define the

column name where this flag is stored.

If you instead wanted to define this in XML then do it like this

<class nametHotel" >

E <extension vendor-namezdatanucleus" key='softdelete” value="true" />
E <extension vendor-nameZdatanucleus” key="softdelete-column-name"
value="DELETE_FLAG"

E

</class>

Whenever any objects of type Hotel are deleted, like this
pmdeletePersistent (myHotel;

the myHotel object will be updated to set the soft-delete flag to true.

Any call to pm.getObjectByld or query will not return the object since it is effectively deleted
(though still present in the datastore).

If you want to view the object, you can specify the query extension include-soft-deletes astrue and
the soft-deleted records will be visible.

This feature is still undergoing development, so not all aspects are feature complete
See also :-

¥ Annotations reference for @SoftDelete

annotations.html#SoftDelete_Class

Inheritance

In Java it is a normal situation to have inheritance between classes. With JDO you have choices to
make as to how you want to persist your classes for the inheritance tree. For each class you select
how you want to persist that classes information. You have the following choices.

¥ The first and simplest to understand option is where each class has its own table in the
datastore. In JDO this is referred to as new-table .

¥ The second way is to select a class to have its fields persisted in the table of its subclass. In JDO
this is referred to as subclass-table

¥ The third way is to select a class to have its fields persisted in the table of its superclass. In JDO
this is known as superclass-table

¥ The final way is for all classes in an inheritance tree to have their own table containing all
fields. This is known as complete-table and is enabled by setting the inheritance strategy of the
root class to use this.

In order to demonstrate the various inheritance strategies we need an example. Here are a few
simple classes representing products in a (online) store. We have an abstract base class, extending
this to to provide something that we can represent any product by. We then provide a few
specialisations for typical products. We will use these classes later when defining how to persistent
these objects in the different inheritance strategies.

AbstractProduct

Fid: long
Fname: 5tring
Fdescription: String

Ay

Product
#price: double

JaY
I I

Book CompactDisc
Fisbn: int Fartist: String
Fauthor: 5tring Ftitle: String
Ftitle: String

T

TravelGuide
Foountry: String

JDO imposes a "default" inheritance strategy if none is specified for a class. If the class is a base
class and no inheritance strategy is specified then it will be set to new-table for that class. If the
class has a superclass and no inheritance strategy is specified then it will be set to superclass-table
This means that, when no strategy is set for the classes in an inheritance tree, they will default to

#inheritance_newtable
#inheritance_subclasstable
#inheritance_superclasstable
#inheritance_completetable

using a single table managed by the base class.

You can control the “"default" strategy chosen by way of the persistence property
datanucleus.defaultinheritanceStrategy . The default is JDO2 which will give the above default
behaviour for all classes that have no strategy specified. The other option is TABLE_PER_CLASS
which will use "new-table" for all classes which have no strategy specified

At runtime, when you start up your PersistenceManagerFactory, JDO will only
know about the classes that the persistence APl has been introduced to via
method calls. To alleviate this, particularly for subclasses of classes in an
inheritance relationship, you should make use of one of the many available Auto
Start Mechanisms

" You must specify the identity of objects in the root persistable class of the
inheritance hierarchy. You cannot redefine it down the inheritance tree

See also :-

¥ MetaData reference for <inheritance> element
¥ MetaData reference for <discriminator> element
¥ Annotations reference for @Inheritance

¥ Annotations reference for @Discriminator

Discriminator

" Applicable to RDBMS, HBase, MongoDB

A discriminator is an extra "column" stored alongside data to identify the class of which that
information is part. It is useful when storing objects which have inheritance to provide a quick way
of determining the object type on retrieval. There are two types of discriminator supported by JDO

¥ class-name : where the actual name of the class is stored as the discriminator

¥ value-map : where a (typically numeric) value is stored for each class in question, allowing
simple look-up of the class it equates to

You specify a discriminator as follows

<class name*Product" >

E <inheritance>

E <discriminator strategy= "class-name" />
E </inheritance>

E ..

</class>

or with annotations

persistence.html#autostart
persistence.html#autostart
metadata_xml.html#inheritance
metadata_xml.html#discriminator
annotations.html#Inheritance
annotations.html#Discriminator

@PersistenceCapable
@Discriminator (strategy =DiscriminatorStrategy .CLASS NAME
public class Product {...}

Alternatively if using value-map strategy then you need to provide the value map for all classes in
the inheritance tree that will be persisted in their own right.

@PersistenceCapable
@Discriminator (strategy =DiscriminatorStrategy .VALUE_MARalue="PRODUQT"
public class Product {...}

@PersistenceCapable
@Discriminator (value="BOOK"
public class Book{...}

New Table

" Applicable to RDBMS

Here we want to have a separate table for each class. This has the advantage of being the most
normalised data definition. It also has the disadvantage of being slower in performance since
multiple tables will need to be accessed to retrieve an object of a sub type. LetOs try an example
using the simplest to understand strategy =~ new-table . We have the classes defined above, and we
want to persist our classes each in their own table. We define the Meta-Data for our classes like this

10

<class name®*AbstractProduct" >

E <inheritance strategy= "new-table" />
E <field name4d" primary-key="true" >
E <column name*PRODUCT _IB"

E <field>

E ..

</class>

<class name“Product" >

E <inheritance strategy= "new-table" />
E

</class>

<class name=Book">

E <inheritance strategy= "new-table" />
E

</class>

<class name“TravelGuide" >

E <inheritance strategy= "new-table" />
E

</class>

<class name=CompactDisc'>

E <inheritance strategy= "new-table" />

E
</class>

or with annotations

@PersistenceCapable
@Inheritance(strategy =InheritanceStrategy . NEW_TABLE
public class AbstractProduct {...}

@PersistenceCapable
@Inheritance(strategy =InheritanceStrategy . NEW_TABLE
public class Product {...}

@PersistenceCapable
@Inheritance(strategy =InheritanceStrategy .NEW_TABLE
public class Book{...}

@PersistenceCapable
@Inheritance(strategy =InheritanceStrategy . NEW_TABLE
public class TravelGuide {...}

@PersistenceCapable

@Inheritance(strategy =InheritanceStrategy . NEW_TABLE
public class CompactDisc{...}

We use the inheritance element to define the persistence of the inherited classes.

In the datastore, each class in an inheritance tree is represented in its own datastore table (tables
ABSTRACTPRODPBRDDUCBOQOKTRAVELGUID&d COMPACTDIS®with the subclasses tables' having
foreign keys between the primary key and the primary key of the superclass' table.

ABSTRACTPRODUCT
+PRODUCT_ID
NAME
DESCRTPTION
PRODUCT
r +PRODUCT _ID]
PRICE
BOOK COMPACTDISC
+PRODUCT _ID +PRODUCT_ID
ISBN ARTIST
AUTHOR TITLE
TITLE
TRAVELGUIDE
+PRODUCT _ID
COUNTRY

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into ABSTRACTPROPRRIODUMBOOKINd TRAVELGUIDE

Subclass table

" Applicable to RDBMS

DataNucleus supports persistence of classes in the tables of subclasses where this is required. This
is typically used where you have an abstract base class and it doesnOt make sense having a separate
table for that class. In our example we have no real interest in having a separate table for the
AbstractProduct class. So in this case we change one thing in the Meta-Data quoted above. We now
change the definition of AbstractProduct as follows

<class name*AbstractProduct" >

E <inheritance strategy= "subclass-table" />
E <field name4%d" primary-key="true" >

E <column name*PRODUCT _IB"

E </field>

E ..

</class>

or with annotations

12

@PersistenceCapable
@Inheritance(strategy =InheritanceStrategy . SUBCLASS TABLE
public class AbstractProduct {...}

This subtle change of use the inheritance element has the effect of using the PRODU@able for both
the Product and AbstractProduct classes, containing the fields of both classes.

PRODUCT
+PRODUCT_ID
{ PRICE]
NAME
BOOK _DESCRIPTION | COMPACTDISC
+PRODUCT _ID +PRODUCT ID
ALUTHOR ARTIST
TITL TITLE
TRAVELGUIDE
+PRODUCT _ID
COUNTRY

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into PRODUMOOKand TRAVELGUIDE

DataNucleus doesnOt currently fully support the use of classes defined with

n subclass-table strategy as having relationships where there are more than a single
subclass that has a table. If the class has a single subclass with its own table then
there should be no problem.

Superclass table

" Applicable to RDBMS

DataNucleus supports persistence of classes in the tables of superclasses where this is required.

This has the advantage that retrieval of an object is a single SQL call to a single table. It also has the
disadvantage that the single table can have a very large number of columns, and database
readability and performance can suffer, and additionally that a discriminator column is required.

In our example, lets ignore the AbstractProduct class for a moment and assume that Product is
the base class. We have no real interest in having separate tables for the Book and CompactDisc
classes and want everything stored in a single table PRODUQNe change our MetaData as follows

13

<class name*Product" >

<inheritance strategy= "new-table" >
<discriminator strategy= "class-name" >
<column name=PRODUCT_TYBE"

<field name&4%d" primary-key="true" >

E

E

E

E </discriminator>

E </inheritance>

E

E <column name*PRODUCT _IB"
E <ffield>

E ..

</class>

<class name*Book">

E <inheritance strategy= "superclass-table" />

E
</class>

<class name*TravelGuide" >

E <inheritance strategy= "superclass-table" />

E
</class>

<class name=CompactDisc'>

E <inheritance strategy= "superclass-table" />

E
</class>

or with annotations

@PersistenceCapable

@Inheritance(strategy =InheritanceStrategy . NEW_TABLE
public class AbstractProduct {...}

@PersistenceCapable

@Inheritance(strategy =InheritanceStrategy .SUPERCLASS TABLE

public class Product {...}

@PersistenceCapable

@Inheritance(strategy =InheritanceStrategy .SUPERCLASS TABLE

public class Book{...}

@PersistenceCapable

@Inheritance(strategy =InheritanceStrategy . SUPERCLASS TABLE
public class TravelGuide {...}

@PersistenceCapable

@Inheritance(strategy =InheritanceStrategy . SUPERCLASS TABLE
public class CompactDisc{...}

This change of use of the inheritance element has the effect of using the

classes, containing the fields of

14

Product , Book , CompactDisc , and TravelGuide

PRODUGable for all
. You will also note

that we used a discriminator element for the Product class. The specification above will result in an
extra column (called PRODUCT_T)visding added to the PRODUG@Dble, and containing the class name
of the object stored. So for a Book it will have "com.mydomain.samples.store.Book" in that column.
This column is used in discriminating which row in the database is of which type. The final thing to

note is that in our classes Book and CompactDisc we have a field that is identically named. With
CompactDisc we have defined that its column will be called DISCTITLEsince both of these fields will
be persisted into the same table and would have had identical names otherwise - this gets around

the problem.

PRODUCT

+PRODUCT _ID
FRICE
NAME
DESCRIPTION
AUTHOR
TITLE
COUNTRY
ARTIST
DISCTITLE
PRODUCT TYPE

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into the PRODU@ble only.

JDO allows two types of discriminators. The example above used a discriminator strategy of class-
name. This inserts the class name into the discriminator column so that we know what the class of

the object really is. The second option is to use a discriminator strategy of value-map . With this we
will define a "value" to be stored in this column for each of our classes. The only thing here is that

we have to define the "value" in the MetaData for ALL classes that use that strategy. So to give the

equivalent example :-

15

<class name“Product" >
<inheritance strategy= "new-table" >
<discriminator strategy= "value-map" value="PRODUCH"
<column name*PRODUCT_TYBE"
</discriminator>
</inheritance>
<field name&4%d" primary-key="true" >
<column name=PRODUCT _IB"
<[field>

T ™ T e me T T me m»

</class>
<class name*Book">

E <inheritance strategy= "superclass-table" >
E <discriminator value="BOOK

E <l/inheritance>

E ..

</class>

<class name*TravelGuide" >

E <inheritance strategy= "superclass-table" >
E <discriminator value="TRAVELGUIDE"
E <l/inheritance>

E ..

</class>

<class nameCompactDisc'>

E <inheritance strategy= "superclass-table" >
E <discriminator value="COMPACTDI$C"
E <linheritance>

E ..

</class>

As you can see from the MetaData DTD it is possible to specify the column details for the
discriminator . DataNucleus supports this, but only currently supports the following values of jdbc-
type : VARCHAR, CHAR, INTEGER, BIGINT, NUMERIC. The default column type will be a VARCHAR.

Complete table

n Applicable to RDBMS, Neo4j, NeoDatis, Excel, OOXML, ODF, HBase, JSON,
AmazonS3, GoogleStorage, MongoDB, LDAP

With "complete-table” we define the strategy on the root class of the inheritance tree and it applies

to all subclasses. Each class is persisted into its own table, having columns for all fields (of the class
in question plus all fields of superclasses). So taking the same classes as used above

16

<class name*Product" >

E <inheritance strategy= "complete-table" />
E <field name4%d" primary-key="true" >
E <column name*PRODUCT _IB"

E </field>

E ..

</class>

<class name=Book'">

E

</class>

<class name=TravelGuide" >

E

</class>

<class nameCompactDisc'>

E

</class>

or with annotations

@PersistenceCapable
@Inheritance(strategy =InheritanceStrategy . COMPLETE_ TABLE
public class AbstractProduct {...}

So the key thing is the specification of inheritance strategy at the root only. This then implies a
datastore schema as follows

PRODUCT BOOK COMPACTDISC TRAVELGUIDE
+PRODUCT _ID +PRODUCT 1D +PRODUCT_ID +PRODUCT 1D
NAME NAME NAME NAME
| DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION
TSBN ARTIST TSBN
AUTHOR TITLE AUTHOR
TITLE TITLE
COUNTRY

So any object of explicit type Book is persisted into the table BOQKSimilarly any TravelGuide is
persisted into the table TRAVELGUIDE& addition if any class in the inheritance tree is abstract then it
wonOt have a table since there cannot be any instances of that type. DataNucleus currently has
limitations when using a class using this inheritance as the element of a collection.

Retrieval of inherited objects

JDO provides particular mechanisms for retrieving inheritance trees. These are accessed via the
Extent/Query interface. Taking our example above, we can then do

17

tx . begin();

Extent e = pmgetExtent (commydomainsamples store . Product. class, true);
Query g = pmnewQuerfe);

Collection c=(Collection) qg. execute();

tx . commiy);

The second parameter passed to pm.getExtent relates to whether to return subclasses. So if we pass
in the root of the inheritance tree (Product in our case) we get all objects in this inheritance tree
returned. You can, of course, use far more elaborate queries using JDOQL, but this is just to
highlight the method of retrieval of subclasses.

18

ldentity

All JDO-enabled persistable classes need to have an "identity" to be able to identify an object for
retrieval and relationships. There are three types of identity defineable using JDO. These are

¥ Datastore Identity : a surrogate column is added to the persistence of the persistable type, and
objects of this type are identified by the class plus the value in this surrogate column.

¥ Application Identity : a field, or several fields of the persistable type are assigned as being (part
of) the primary key.

¥ Nondurable Identity : the persistable type has no identity as such, so the only way to lookup
objects of this type would be via query for values of specific fields. This is useful for storing
things like log messages etc.

A further complication is where you use application identity but one of the fields forming the
primary key is a relation field. This is known as Compound Identity

When you have an inheritance hierarchy, you should specify the identity type in

the base instantiable class for the inheritance tree. This is then used for all
persistent classes in the tree. This means that you can have superclass(es) without
any identity defined but using subclass-table inheritance, and then the base
instantiable class is the first persistable class which has the identity.

The JDOidentity is not the same as the type of the field(s) marked as the primary
key. The identity will always have an identity class name. If you specify the object-
id class then it will be this, otherwise will use a built-in type.

Datastore Identity

n Applicable to RDBMS, ODF, Excel, OOXML, HBase, Neo4j, MongoDB, XML,
Cassandra, JSON

With datastore identity ~ you are leaving the assignment of idOs to DataNucleus and your class will
not have a field for this identity - it will be added to the datastore representation by DataNucleus. It

is, to all extents and purposes, a surrogate key that will have its own column in the datastore. To
specify that a class is to use datastore identity with JDO, you do it like this

@PersistenceCapablé¢identityType =ldentityType . DATASTORE
public class MyClass

{
E
}

or using XML metadata

19

#datastore_identity
#application_identity
#nondurable_identity
#compound_identity

<class name=MyClass" identity-type= "datastore" >

</class>

So you are specifying the identity-type as datastore . You donOt need to add this because datastore is
the default, so in the absence of any value, it will be assumed to be 'datastore’.

Datastore Identity : Generating identities

By choosing datastore identity you are handing the process of identity generation to the JDO
implementation. This does not mean that you havenOt got any control over how it does this. JDO
defines many ways of generating these identities and DataNucleus supports all of these and
provides some more of its own besides.

Defining which one to use is a simple matter of specifying its metadata, like this

@PersistenceCapable
@Datastoreldentity (strategy ="sequence”, sequence"'MY_SEQUENCE"
public class MyClass

{
E
}

or using XML metadata

<class name=MyClass" identity-type= "datastore" >
E <datastore-identity strategy= "sequence" sequence2MY_SEQUENGSE"

E
</class>

Some of the datastore identity strategies require additional attributes, but the specification is
straightforward.
See also :-

¥ Value Generation - strategies for generating ids
¥ MetaData reference for <datastore-identity> element

¥ Annotations reference for @Datastoreldentity

Datastore Identity : Accessing the Identity

When using datastore identity , the class has no associated field so you canOt just access a field of
the class to see its identity. If you need a field to be able to access the identity then you should be
using application identity . There are, however, ways to get the identity for the datastore identity
case, if you have the object.

20

mapping.html#value_generation
metadata_xml.html#datastore-identity
annotations.html#DatastoreIdentity
mapping.html#application_identity

/I Via the PersistenceManager
Object id = pmgetObjectld (obj);

/l Via JIDOHelper
Object id = JDOHelpergetObjectld (obj);

You should be aware however that the "identity" is in a complicated form, and is not available as a
simple integer value for example. Again, if you want an identity of that form then you should use
application identity

Datastore Identity : Implementation

When implementing datastore identity all JDO implementations have to provide a public class

that represents this identity. If you call pm.getObjectld(E) for a class using datastore identity you
will be passed an object which, in the case of DataNucleus wil be of type
org.datanucleus.identity.OIDImpl . If you were to call "toString()" on this object you would get

something like

1[OID]Jmydomain.MyClass

This is made up of :-

E 1 = identity number of this object
E class-name

The definition of this datastore identity is JDO implementation dependent. As a
result you should not use the org.datanucleus.identity.OID class in your
application if you want to remain implementation independent.

= Extension
= Point

DataNucleus allows you the luxury of being able to provide your own datastore identity class o]
you can have whatever formatting you want for identities.

Datastore Identity : Accessing objects by Identity

If you have the JDO identity then you can access the object with that identity like this

Object obj = pmgetObjectByld (id);

You can also access the object from the object class name and the toString() form of the datastore
identity (e.g "1[OID]Jmydomain.MyClass") like this

Object obj = pmgetObjectByld (MyClassclass, mykey;,

21

mapping.html#application_identity
../extensions/extensions.html#datastoreidentity

Application ldentity

" Applicable to all datastores.

With application identity you are taking control of the specification of idOs to DataNucleus.
Application identity requires a primary key class (unless you have a single primary-key field in which
case the PK class is provided for you) , and each persistent capable class may define a different class
for its primary key, and different persistent capable classes can use the same primary key class, as
appropriate. With application identity the field(s) of the primary key will be present as field(s) of
the class itself. To specify that a class is to use application identity , you add the following to the
MetaData for the class.

<class nameMyClass" objectid-class= "MyldClass">
E <field name!myPrimaryKeyField" primary-key="true" />

E
</class>

For JDO we specify the primary-key and objectid-class . The objectid-class is optional, and is the
class defining the identity for this class (again, if you have a single primary-key field then you can
omit it). Alternatively, if we are using annotations

@PersistenceCapabléobjectidClass =MyldClass class)
public class MyClass

{
E @Persistent(primaryKey="true")
E private long myPrimaryKeyField
}

See also :-

¥ MetaData reference for <field> element

¥ Annotations reference for @Persistent

Application Identity : PrimaryKey Classes

When you choose application identity you are defining which fields of the class are part of the

primary key, and you are taking control of the specification of idOs to DataNucleus. Application
identity requires a primary key (PK) class, and each persistent capable class may define a different
class for its primary key, and different persistent capable classes can use the same primary key
class, as appropriate. If you have only a single primary-key field then there are built-in PK classes
so you can forget this section.

If you are thinking of using multiple primary key fields in a class we would urge

n you to consider using a single (maybe surrogate) primary key field instead for
reasons of simplicity and performance. This also means that you can avoid the
need to define your own primary key class.

22

metadata_xml.html#field
annotations.html#Persistent

Where you have more than 1 primary key field, you would map the persistable class like this

<class nametMyClass" identity-type= "application" objectid-class= "MyldClass">

</class>
or using annotations

@PersistenceCapablé¢objectldClass =MyldClass class)
public class MyClass

{
E
}

You now need to define the PK class to use (MyldClass). This is simplified for you because if you

have only one PK field then you donOt need to define a PK class and you only define it when you
have a composite PK.

An important thing to note is that the PK can only be made up of fields of the following Java types

¥ Primitives : boolean , byte , char , int , long , short

¥ java.lang : Boolean , Byte, Character , Integer , Long, Short , String , Enum , StringBuffer
¥ java.math : Biglnteger

¥ java.sql : Date, Time , Timestamp

¥ java.util : Date, Currency , Locale , TimeZone, UUID

¥ java.net : URI, URL

¥ Persistable

Note that the types in bold are JDO standard types. Any others are DataNucleus extensions and, as
always, check the specific datastore docs to see what is supported for your datastore.

Single PrimaryKey field

The simplest way of using application identity is where you have a single PK field, and in this case
you use SingleFieldldentity Javadoc| mechanism. This provides a PrimaryKey and you donOt need to
specify the objectid-class . LetOs take an example

public class MyClass

long id;

— m) m>f-"-\

23

../datastores/datastores.html
http://www.datanucleus.org/javadocs/javax.jdo/3.2/javax/jdo/identity/SingleFieldIdentity.html

<class name=MyClass" identity-type= "application" >
E <field name4%d" primary-key="true" />

E
</class>

or using annotations

@PersistenceCapable
public class MyClass

@PrimaryKey
long id;

>~ m m m—

So we didnOt specify the JDO "objectid-class”. You will, of course, have to give the field a value before
persisting the object, either by setting it yourself, or by using a value-strategy on that field.

If you need to create an identity of this form for use in querying via pm.getObjectByld() then you

can create the identities in the following way

/[For a "long" type :
javax.jdo.identity .Longldentity id = newjavax.jdo.identity .Longldentity (myClass

101);
/[For a "String" type :

javax.jdo.identity . Stringldentity id = newjavax.jdo.identity . Stringldentity (myClass
"ABCD);

We have shown an example above for type "long", but you can also use this for the following

short, Short - javax.jdo.identity.Shortldentity

int, Integer - javax.jdo.identity.Intldentity
long, Long - javax.jdo.identity.Longldentity
String - javax.jdo.identity. Stringldentity
char, Character - javax.jdo.identity.Charldentity
byte, Byte - javax.jdo.identity.Byteldentity

java.util.Date - javax.jdo.identity.Objectldentity
java.util.Currency - javax.jdo.identity.Objectldentity
java.util.Locale - javax.jdo.identity.Objectldentity

It is however better not to make explicit use of these JDO classes and instead to
| just use the pm.getObjectByld taking in the class and the value and then you have
no dependency on these classes.

24

mapping.html#value_generation

PrimaryKey : Rules for User-Defined classes

If you wish to use application identity and donOt want to use the "SingleFieldldentity" builtin PK
classes then you must define a Primary Key class of your own. You canOt use classes like
java.lang.String, or java.lang.Long directly. You must follow these rules when defining your primary

key class.

¥ the Primary Key class must be public

¥ the Primary Key class must implement Serializable

¥ the Primary Key class must have a public no-arg constructor, which might be the default
constructor

¥ the field types of all non-static fields in the Primary Key class must be serializable, and are
recommended to be primitive, String, Date, or Number types

¥ all serializable non-static fields in the Primary Key class must be public

¥ the names of the non-static fields in the Primary Key class must include the names of the
primary key fields in the JDO class, and the types of the common fields must be identical

¥ the equals() and hashCode() methods of the Primary Key class must use the value(s) of all the
fields corresponding to the primary key fields in the JDO class

¥ if the Primary Key class is an inner class, it must be static

¥ the Primary Key class must override the toString() method defined in Object, and return a String
that can be used as the parameter of a constructor

¥ the Primary Key class must provide a String constructor that returns an instance that compares
equal to an instance that returned that String by the toString() method.

¥ the Primary Key class must be only used within a single inheritence tree.

Please note that if one of the fields that comprises the primary key is in itself a persistable object
then you have Compound Identity and should consult the documentation for that feature which
contains its own example.

‘-:g:Extensi on
=

Since there are many possible combinations of primary-key fields it is impossible
for JDO to provide a series of builtin composite primary key classes. However the
DataNucleus enhancer provides a mechanism for auto-generating a primary-key
class for a persistable class. It follows the rules listed below and should work for
all cases. Obviously if you want to tailor the output of things like the PK toString()
method then you ought to define your own. The enhancer generation of primary-
key class is only enabled if you donOt define your own class.

Your "id" class can store the target class name of the persistable object that it

n represents. This is useful where you want to avoid lookups of a class in an
inheritance tree. To do this, add a field to your id-class called targetClassName
and make sure that it is part of the toString() and String constructor code.

25

mapping.html#compound_identity
enhancer.html

PrimaryKey Example - Multiple Field

Again, if you are thinking of using multiple primary key fields in a class we would

n urge you to consider using a single (maybe surrogate) primary key field instead
for reasons of simplicity and performance. This also means that you can avoid
the need to define your own primary key class.

HereOs an example of a composite (multiple field) primary key class

@PersistenceCapabléobjectldClass =ComposedldKeylass)
public class MyClass

{

E @PrimaryKey
E String fieldl ;
E @PrimaryKey
E String field2 ;
E

}

public class ComposedldKeymplements Serializable

{

E public String targetClassName // DataNucleus extension, storing the class name of
the persistable object

E public String fieldl ;

E public String field2 ;

E public ComposedidKey)

E {

E }

E [**

E * Constructor accepting same input as generated by toString().
E *

E public ComposedldKéptring value)

E {

E StringTokenizer token = new StringTokenizer (value, ":");
E this . targetClassName = token. nextToken(); // className
E this . fieldl = token. nextToken(); // fieldl

E this . field2 = token. nextToken(); // field2

E }

E public boolean equals(Object obj)

E {

E if (obj ==this)

E {

E return true ;

E }

E if (!(obj instanceof ComposedIidKgy

E {

26

E return false ;

E }

E ComposedldKeyg = (ComposedidKéwbj;

E return fieldl .equals(c.fieldl) &&field2 .equals(c.field2);
E)}

E public int hashCode()

E {

E return this .fieldl .hashCod@ * this .field2 .hashCod§;

E)}

E public String toString ()

E {

E /I Give output expected by String constructor

E return this . targetClassName + "::" + this .fieldl + ":" + this . field2 ;
E)}

}

Application Identity : Generating identities

By choosing application identity you are controlling the process of identity generation for this
class. This does not mean that you have a lot of work to do for this. JDO defines many ways of
generating these identities and DataNucleus supports all of these and provides some more of its
own besides.

See also :-

¥ Value Generation - strategies for generating ids

Application Identity : Accessing the Identity

When using application identity , the class has associated field(s) that equate to the identity. As a
result you can simply access the values for these field(s). Alternatively you could use a JDO identity-
independent way

/I Using the PersistenceManager
Object id = pmgetObjectld (obj);

/I Using JDOHelper
Object id = JDOHelpergetObjectld (obj);

Application Identity : Changing ldentities

JDO allows implementations to support the changing of the identity of a persisted object. This is an

optional feature and DataNucleus doesnOt currently support it.

27

mapping.html#value_generation

Application Identity : Accessing objects by Identity

If you have the JDO identity then you can access the object with that identity like this
Object obj = pmgetObjectByld (id);

If you are using SingleField identity then you can access it from the object class name and the key
value like this

Object obj = pmgetObjectByld (MyClassclass, mykey;

If you are using your own PK class then the = mykey value is the toString() form of the identity of
your PK class.

Nondurable Identity

" Applicable to RDBMS, ODF, Excel, OOXML, HBase, Neo4j, MongoDB.

With nondurable identity your objects will not have a unique identity in the datastore. This type

of identity is typically for log files, history files etc where you arenOt going to access the object by
key, but instead by a different parameter. In the datastore the table will typically not have a
primary key. To specify that a class is to use nondurable identity with JDO you would define
metadata like this

@PersistenceCapablé¢identityType =ldentityType . NONDURABLE
public class MyClass

{
E
}

or using XML metadata

<class name=MyClass" identity-type= "nondurable" >

</class>

What this means for something like RDBMS is that the table (or view) of the class will not have a
primary-key.

Compound Identity Relationships

A JDO "compound identity relationship" is a relationship between two classes in which the child
object must coexist with the parent object and where the primary key of the child includes the
persistable object of the parent. The key aspect of this type of relationship is that the primary key of

28

one of the classes includes a persistable field (hence why is is referred to as Compound Identity).
This type of relation is available in the following forms

¥ 1-1 unidirectional

¥ 1-N collection bidirectional using ForeignKey

¥ 1-N map bidirectional using ForeignKey (key stored in value)

In the identity class of the compound persistable class you should define the
object-idclass of the persistable type being contained and use that type in the
identity class of the compound persistable type.

n The persistable class that is contained cannot be using datastore identity , and
must be using application identity with an objectid-class

When using compound identity, it is best practice to define an object-idclass for
any persistable classes that are part of the primary key, and not rely on the built-
in identity types.

1-1 Relationship

Lets take the same classes as we have in the 1-1 Relationships . In the 1-1 relationships guide we
note that in the datastore representation of the User and Account the ACCOUNT table has a
primary key as well as a foreign-key to ~ USER. In our example here we want to just have a primary

key that is also a foreign-key to USER. To do this we need to modify the classes slightly and add
primary-key fields and use "application-identity".

public class User

E long id;

public class Account

{

E User user;

E
}

In addition we need to define primary key classes for our User and Account classes

public class User

{
E long id;

29

mapping.html#one_one

30

T T T> [Th T M T [Th T > m» [T [T > T [T T [T

[T [T > [Th

S [T [T > e e mp me mp e mp

(remainder of User class)

/**

* |Inner class representing Primary Key

*/
public static

{

class PKimplements Serializable

public long id;
public PK)
{
}
public PKString s)
{
this .id = Long valueOf(s). longValue();
}
public String toString ()
{
return " +id;
}
public int hashCodg
{
return (int)id;
}
public boolean equals(Object other)
{
if (other != null &&(other instanceof
{
PK otherPK = (PR other;
return otherPK id == this .id;
}
return false ;
}

public class Account

{
E

mp

T [T T [Th [T

User user;

(remainder of Account class)

/**

* |Inner class representing Primary Key

*/
public static

{

class PKimplements Serializable

PK)

[T

T T T > [mp T > m»

T M T [Th

T T T> [Th

> > [T mp e mp mp me mp e mp

public User. PKuser; // Use same name as the real field above

public PK)
{
}
public PKString s)
{
StringTokenizer token = new StringTokenizer (s,":");
this . user = new User. PK token. nextToken));
}
public String toString ()
{
return " + this . user. toString ();
}
public int hashCod@
{
return user. hashCodg);
}
public boolean equals(Object other)
{
if (other != null &&(other instanceof PK)
{
PK otherPK = (PR other;
return this . user. equals(otherPK user);
}
return false ;
}

To achieve what we want with the datastore schema we define the MetaData like this

31

<package nametmydomain>

E <class nameWser" identity-type= "application” objectid-class= "User$PK*

E <field name4d" primary-key="true" />

E <field name4dogin" persistence-modifier= "persistent” >

E <column length="20" jdbc-type= "VARCHAR"

E <ffield>

E <class>

E <class name*Account" identity-type= "application” objectid-class= "Account$PK'>
E <field name*user" persistence-modifier= "persistent* primary-key="true" >
E <column name*USER_ID*

E </field>

E <field name=firstName" persistence-modifier= "persistent” >

E <column length="50" jdbc-type= "VARCHAR"

E <[field>

E <field name“secondName'persistence-modifier= "persistent" >

E <column length="50" jdbc-type= "VARCHAR"

E <ffield>

E <class>

</package>

So now we have the following datastore schema

USER ACCOUNT
+USER_ID +USER 1D
LOGIN FIRSTNAME
LASTNAME

Things to note :-

¥ You must use "application-identity" in both parent and child classes

¥ In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

¥ See also the general instructions for Primary Key classes

¥ You can only have one "Account" object linked to a particular "User" object since the FK to the
"User" is now the primary key of "Account”. To remove this restriction you could also add a
"long id" to "Account” and make the "Account.PK" a composite primary-key

1-N Collection Relationship

Lets take the same classes as we have in the 1-N Relationships (FK) . In the 1-N relationships guide
we note that in the datastore representation of the Account and Address classes the ADDRESS
table has a primary key as well as a foreign-key to ACCOUNT. In our example here we want to have
the primary-key to ACCOUNT to include the foreign-key. To do this we need to modify the classes
slightly, adding primary-key fields to both classes, and use "application-identity" for both.

32

mapping.html#application_identity_primarykey
mapping.html#one_many_fk_bi

public class Account

{
E

long id;

Set<Address> addresses;

public class Address

{
E

long id;

Account account;

In addition we need to define primary key classes for our

public class Account

{

E

E

»

T ™ T mp My me

m T [mp

m M m» [mp

m M m» [mp

long id; // PK field
Set addresses = new HashSe();

(remainder of Account class)

/**

* Inner class representing Primary Key

*/

public static class PKimplements Serializable

{

public long id;
public PK)
{
}
public PKString s)
{
this .id = Long valueOf(s). longValue();
}
public String toString ()
{
return " +id;
}

Account and Address classes

33

34

m M mp [mp

S~ [T ™ e mp me mp e mp e me

public int hashCod@

{
return (int)id;
}
public boolean equals(Object other)
{
if (other = null &&(other instanceof PK)
{
PK otherPK = (PKother;
return otherPK id == this .id;
}
return false ;
}

public class Address

m m—

m m> T Ty me m» T > [mp T e T mp me mp e mp

m > mp [mp

T T T

long id;
Account account;

/**

(remainder of Address class)

* Inner class representing Primary Key

*/

public static class PKimplements Serializable

{

public long id; // Same name as real field above

public Account PKaccount; // Same name as the real field above

public PK)

{

}

public PKString s)

{
StringTokenizer token = new StringTokenizer (s,":");
this .id = Long valueOf(token. nextToken()). longValue();
this . account = new Account PK token. nextToken());

}

public String toString ()

{
return "™ +id + ":" + this . account. toString ();

}

public int hashCod@
{

return (int)id ~ account. hashCod§é);

E }
E

E {
E

E

E

E

E

E

E }
E }

}

public boolean equals(Object other)

if (other != null &&(other instanceof PHK)

{
PK otherPK = (PKother;

return otherPK id == this .id &&this . account. equals(otherPK. account);

}

return false ;

To achieve what we want with the datastore schema we define the MetaData like this

<package nametmydomain>

T T e T Ty me T T me mpy Ty mp

> [T e M Ty me mp Ty me mp [y mp

</package>

<class name®Account” identity-type= "application" objectid-class= "Account$PK'>
<field name=d" primary-key="true" />
<field name4irstName" persistence-modifier= "persistent” >

<column length="50" jdbc-type= "VARCHAR"

</field>
<field name“secondName'persistence-modifier= "persistent" >

<column length="50" jdbc-type= "VARCHAR"

<ffield>
<field name=addresses" persistence-modifier= "persistent” mapped-by=account" >

<collection element-type="Address"/>

</field>
</class>

<class name®*Address" identity-type= "application" objectid-class= "Address$PK>
<field name%d" primary-key="true" />
<field name®account” persistence-modifier= "persistent" primary-key="true" >

<column name*ACCOUNT _IB"

<[field>
<field name=city" persistence-modifier= "persistent" >

<column length="50" jdbc-type= "VARCHAR"

<[field>
<field name=street” persistence-modifier= "persistent" >

<column length="50" jdbc-type= "VARCHAR"

</field>
</class>

So now we have the following datastore schema

35

ACCOUNT ADDRESS

+ACCOUNT ID +ID
FIRSTHNAME +ACCOUNT ID
LASTNAME CITY
STREET

Things to note :-

¥ You must use "application-identity" in both parent and child classes

¥ In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

¥ See also the general instructions for Primary Key classes

¥ If we had omitted the "id" field from "Address” it would have only been possible to have one
"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "id" field too.

1-N Map Relationship

Lets take the same classes as we have in the 1-N Relationships (FK) . In this guide we note that in the
datastore representation of the ~ Account and Address classes the ADDRESS table has a primary key
as well as a foreign-key to ACCOUNT. In our example here we want to have the primary-key to
ACCOUNT to include the foreign-key. To do this we need to modify the classes slightly, adding
primary-key fields to both classes, and use "application-identity" for both.

public class Account

{
E long id;

E MapsString , Address> addresses;

E
}
public class Address
{
E long id;
E String alias ;
E Account account;
E
}
In addition we need to define primary key classes for our Account and Address classes

36

mapping.html#application_identity_primarykey
mapping.html#one_many_map_fk_bi_key

