@ DataNucleus

S

JDO Persistence Guide (v5.2)

Table of Contents

PersistenceManagerFactory 2....
PersistenceManagerFactory for Persistence-Unit 3..
Named PersistenceManagerFactory 6...
PersistenceManagerFactory Properties e ...
Closing PersistenceManagerFactoryt e 30..
Level 2 Cache 80. ...

Datastore SChemMao 88.. ..
Schema Generation for persistence-Unit 88. .
Schema Auto-Generation at ruNtime 89..
Schema Generation : Validation 89 ..
Schema Generation : Naming ISSUESottt e e e 40 . .
Schema Generation : Column Orderingottt 0. .
Read-Only ... 4al....
SCheMAT OOl a1. ...
SChemaT o0l AP . . 48. ...
Schema Adapltion 49. . ..
RDBMS : Datastore Schema SPI 0. ..

AutoStart Mechanism ad ...
AutoStartMechanism : NONE b4, ..
AutoStartMechanism @ XML ... b4, ..
AutoStartMechanism @ ClassSesttt &5, ..
AutoStartMechanism : MetaData a5 ..
AutoStartMechanism : SchemaTable (RDBMS only) 5.

PersistenCeEMAaNAgEro YA
Opening/Closing a PersistenceManagert 57. .
Persisting an ObjeCt a8 ...
Persisting multiple Objects inone call e 58. .
Finding an object by its identity &8 ..
Finding an object by its class and primary-key value 9.
Finding an object by its class and unique key field value(s) 60
Deleting an ObjJeCt 61 ...
Modifying a persisted ObJect H62. . .
Detaching a persisted ObjeCt 63. ..
Attaching a persisted ObjJeCt 65. ..
Refresh of 0bJeCtS 66. ...
Cascading OperatioNSottt 66 ...
Managing Relationships 67. ..

Managed Relationships 69. ..

Level 1 Cache 69. ...

PersistenCEMAaNAgEIPIOXY . . . o\ttt et e 0. ..
Datastore SEqUENCES APl gl...
ODbjeCt LIfECYCle . . e 5. ...
Helper Methods e e e e e &b, ...
TrANSACHONS . o ..t 7. ...
Locally-Managed Transactions it . ..
JTA TranSaCtioNSttt e e e e 8 ...
Container-Managed TranSactioNSttt 9 ..
Spring-Managed TranSacCtioNSottt 9. ..
NO TranSaCHONSttt e e e e e e e e 9. ...
Transaction ISolation 80...
JDO Transaction SynChronisation e e e 80 ..
Read-Only TransSaCtioNs e 8l. ..
FIUSNING . . e 82....
Transactions with lots of data 83 ..
Transaction SaVEPOINIS 84. ..
LOCKING . . e 85
Pessimistic (Datastore) LoCKiNg e 85 ..
OpPtiMIStIC LOCKING . . o e e e e e e e e e e e 86 ...
Datastore CONNECLONSttt e e e e e e e 89. ..
Transactional CoNtEXt o 89...
Nontransactional CoNtEXt o Q0. ..
USEr CONNEBCLION . . oottt e e e e e e e e e e e e e e e e e e e Q0. ...
CoNNECHION POOIING . . . e e oL ...
Data SOUICES . . . oottt e e 96. ...
MU ENANCY . . oot e d00. ..
Multitenancy via Discriminator in Table e .00.
Bean Validation d03. ..
FelCh GroUPS . . .o e d04. ..
Default FEtCh GroUpo e 404 ..
Named FetCh GrOUPS e e e d05..
Dynamic FetCh GroUPS oo e e e d06. .
FetCh Depth . .. e d07. ..
FetCh Size . . . o d08. ..
Lifecycle Callbacks d10. ..
Instance Callbacks 10 ..
LifeCyCle LiSteNerS ... e e A11 ..
JavaEE ENVIFONMENTS e 16 ..
REUITEMENIS . .. d16. ..

DataNucleus Resource Adaptor and transactionst 16

PerSiStENCE PrOPeIieS . ..o e e d19..

General CoNfigUIatioN d19..
WD OGIC . . . e d20. ..
JBOSS 3.0/3. 2 d21. ..
JBOSS 4.0, . d23. ..
JBOSS 7.0, . d24 . ..
JON S .« ot 24
TraNSACHION SUPPOI . o e d24 ..
Data SOUICEttt d25. ..
OSGi ENVIrONMENTS . . .o d27. ..
HOWTO Use Datanucleus with OSGiand Spring DM e d27
Using DataNucleus with Eclipse RCP e e e d36.
DataNucleus + Eclipse RCP + SPIiNg . ..ottt e e e e €38.
Performance TUNINGo e e e Az, ..
ENNanCemMeEnt daz. ..
SO . . o o AAT ...
PersistenceManagerFactory USAQEo v vttt ettt e e e e e et d48.
PersistenCeEMAaNAgEr USAJE ottt et ettt e e e e e d48. .
PErSIStENCE PrOCESS o ittt e e e e e e 449 ..
Database Connection POOING e éd50. .
Value GENEIALOIS . . . o ottt et e e e e e e 5o . .
Collection/Map CaChing i e d50. .
NonTransactional Reads (Reading persistent objects outside a transaction) — d51
Accessing fields of persistent objects when not managed by a PersistenceManager — d51
QUEIIES USATE .« o o oottt e e e e e e e e db54. ..
Fetch Control db54. ..
10 To o 1T d54 . ..
General CoOMMENTS o e A54 ..
REPI AN . ..o e e A57. ..
Example without using the JDOReplicationManager helper 457
Data Federation del. ..
Defining Primary and Secondary Datastores 61
Defining which class is persisted to which datastore d61
JaVa SBCUNLY . . oot e e d63...
MONIEOIING . .ottt e d65. ..
VB AP £65
USING IMX Lo e de65. ..
DataNUCIEUS LOGQINGg . . oo oo e e e e e A7 ..
LOgQiNg CategoriEsS . ..t e A7 ..
USING LOGA .« .« . e e d68. ..

Using java.utilloggingo d69. .

Sample Log Output

HOWTO : Log with log4j and DataNucleus under OSGi i 2

We saw in the JDO Mapping Guide how to map classes for persistence with the
JDO API. In this guide we will describe the JDO API itself, showing how to persist,
update and delete objects from persistence.

You should familiarise yourself with the JDO 3.2 Javadocs

mapping.html
http://www.datanucleus.org/javadocs/javax.jdo/3.2/

PersistenceManagerFactory

Any JDO-enabled application will require at least one PersistenceManagerFactory (PMF) .
Typically applications create one per datastore being utilised. A PersistenceManagerFactory
provides access to PersistenceManager(s) which allow objects to be persisted, and retrieved. The
PersistenceManagerFactory can be configured to provide particular behaviour.

A PersistenceManagerFactory is designed to be thread-safe. A PersistenceManager
. is not.

A PersistenceyManagerFactory is expensive to create so you should create one per
datastore for your application and retain it for as long as it is needed. Always
close your PersistenceManagerFactory after you have finished with it.

There are many ways of creating a PersistenceManagerFactory , some of which are shown below

Properties properties = new Properties ();

properties . setProperty (“javax.jdo.PersistenceManagerFactoryClass"
"org.datanucleus.api.jdo.JDOPersistenceManagerFactory");

properties . setProperty (“javax.jdo.option.ConnectionURL" , "jdbc:mysql://localhost/myDB")
properties . setProperty (“javax.jdo.option.ConnectionUserName" , "login");

properties . setProperty (“javax.jdo.option.ConnectionPassword" , "password");

PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory (properties);
A slight variation on this, is to have a file to specify these properties in a file

javax.jdo.PersistenceManagerFactoryClass=org.datanucleus.api.jdo.JDOPersistenceManager
Factory

javax.jdo.option.ConnectionURL=jdbc:mysql://localhost/myDB
javax.jdo.option.ConnectionUserName=login

javax.jdo.option.ConnectionPassword=password

and then to create the PersistenceManagerFactory using this file

File propsFile = newFile (filename);
PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory (propsFile);

or if the above file is in the CLASSPATH (at datanucleus.properties in the root of the CLASSPATH),
then

PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory
("datanucleus.properties”);

http://www.datanucleus.org/javadocs/javax.jdo/3.2/javax/jdo/PersistenceManagerFactory.html

If using a named PMF file, you can create the PMF by providing the name of the PMF like this
PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory ("myNamedPNF"
If using a META-INF/persistence.xml file, you can simply specify the persistence-unit name as

PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory
("myPersistenceUnit");

Another alternative, when specifying your datastore via JNDI, would be to call
JDOHelper.getPersistenceManagerFactory(jndiLocation, context); , and then set the other persistence
properties on the received PMF.

Whichever way we wish to obtain the PersistenceManagerFactory we have defined a series of
properties to give the behaviour of the PersistenceManagerFactory . The first property specifies to
use the DataNucleus implementation, and the following 4 properties define the datastore that it
should connect to. There are many properties available. Some of these are standard JDO properties,

and some are DataNucleus extensions.

PersistenceManagerFactory for Persistence-Unit

When designing an application you can usually nicely separate your persistable objects into
independent groupings that can be treated separately, perhaps within a different DAO object, if
using DAOs. JDO uses the (JPA) idea of a persistence-unit . A persistence-unit provides a convenient
way of specifying a set of metadata files, and classes, and jars that contain all classes to be persisted

in a grouping. The persistence-unit is named, and the name is used for identifying it. Consequently

this name can then be used when defining what classes are to be enhanced, for example.

To define a persistence-unit you first need to add a file persistence.xml to the META-INFAdirectory of
the CLASSPATH (this may mean WEB-INF/classes/META-INWhen using a web-application in such as
Tomcat). This file will be used to define your persistence-unit(s) . Lets show an example

#pmf_named
#persistenceunit

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmins='http://xmins.jcp.org/xml/ns/persistence"

E xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://xmins.jcp.org/xml/ns/persistence
http://xmIns.jcp.org/xml/ns/persistence/persistence_2_ 1.xsd" version="2.1" >

T m> M

<!I-- Online Store -->
<persistence-unit name=OnlineStore" >
<class>mydomain.samples.metadata.store.Product </class>
<class>mydomain.samples.metadata.store.Book</class>
<class>mydomain.samples.metadata.store.CompactDise/class>
<class>mydomain.samples.metadata.store.Customer/class>
<class>mydomain.samples.metadata.store.Supplier </class>
<exclude-unlisted-classes/>
<properties>
<property name=datanucleus.ConnectionURL" value=
dbc:h2:mem:datanucleus” />
<property name=datanucleus.ConnectionUserName" value="sa" />
<property name*datanucleus.ConnectionPassword" value=""/>
</properties>
</persistence-unit>

[T [T > T [T T T T Th TP

—

[T [T T [Th

<l-- Accounting -->
<persistence-unit name#Accounting" >
<mapping-file> /mydomain/samples/metadata/accounts/package.jdo </mapping-file>
<properties>
<property name=datanucleus.ConnectionURL" value=
dbc:h2:mem:datanucleus” />
<property name*datanucleus.ConnectionUserName" value="sa" />
<property name=datanucleus.ConnectionPassword" value=""/>
</properties>
</persistence-unit>

T > T mp me

—

T T T [Th

</persistence>

In this example we have defined 2 persistence-unit(s) . The first has the name "OnlineStore" and
contains 5 classes (annotated). The second has the name "Accounting” and contains a metadata file
called package.jdo in a particular package (which will define the classes being part of that unit).

This means that once we have defined this we can reference these persistence-unit(s) in our
persistence operations. You can find the XSD for persistence.xml here.

There are several sub-elements of this persistence.xml file

¥ provider - Not used by JDO

¥ jta-data-source - JNDI name for JTA connections (make sure you set transaction-type as JTA on
the persistence-unit for this). You can alternatively specify JDO standard
javax.jdo.option.ConnectionFactoryName to the same end.

¥ non-jta-data-source - JNDI name for non-JTA connections. You can alternatively specify JDO

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd

standard javax.jdo.option.ConnectionFactory2Name to the same end.

¥ shared-cache-mode - Defines the way the L2 cache will operate. ALL means all entities cached.
NONE means no entities will be cached. ENABLE_SELECTIVE means only cache the entities that
are specified. DISABLE_SELECTIVE means cache all unless specified. UNSPECIFIED leaves it to
DataNucleus.

¥ validation-mode - Defines the validation mode for Bean Validation. AUTO, CALLBACK or NONE.
¥ jar-file - name of a JAR file to scan for annotated classes to include in this persistence-unit.

¥ mapping-file - name of an XML "mapping" file containing persistence information to be
included in this persistence-unit. This is the JDO XML Metadata file (package.jdo) (not the ORM
XML Metadata file)

¥ class - name of an annotated class to include in this persistence-unit
¥ properties - properties defining the persistence factory to be used.

¥ exclude-unlisted-classes - when this is specified then it will only load metadata for the
classes/mapping files listed.

Use with JDO

JDO accepts the ‘“persistence-unit name to be specified when creating the
PersistenceManagerFactory , like this

PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory
("MyPersistenceUnit");

Metadata loading using persistence unit

When you specify a PMF using a persistence.xml it will load the metadata for all classes that are
specified directly in the persistence unit, as well as all classes defined in JDO XML metadata files

that are specified directly in the persistence unit. If you donOt have the exclude-unlisted-classes set to
true then it will also do a CLASSPATH scan to try to find any other annotated classes that are part
of that persistence unit. To set the CLASSPATH scanner to a custom version use the persistence
property datanucleus.metadata.scanner and set it to the classname of the scanner class.

Dynamically generated Persistence-Unit
‘@?_:Extensi on

DataNucleus allows an extension to the JDO API to dynamically create persistence-units at runtime.
Use the following code sample as a guide. Obviously any classes defined in the persistence-unit
need to have been enhanced.

import org.datanucleus.metadata.PersistenceUnitMetaData ;
import org.datanucleus.api.jdo.JDOPersistenceManagerFactory ;

PersistenceUnitMetaData pumd= new PersistenceUnitMetaData ("dynamic-unit" ,
"RESOURCE_LOCAIII);

pumdaddClassNan{¢mydomain.test. A");

pumdsetExcludeUnlistedClasses ();
pumdaddProperty("javax.jdo.ConnectionURL" , "jdbc:hsqgldb:mem:nucleus");
pumdaddProperty("javax.jdo.ConnectionUserName", "sa");
pumdaddProperty("javax.jdo.ConnectionPassword" , "™);
pumdaddProperty("datanucleus.schema.autoCreateAll" , "true");

PersistenceManagerFactory pmf = new JDOPersistenceManagerFactorgpumd null);

It should be noted that if you call pumd.toString(); then this returns the text that would have been
found in a persistence.xml file.

Named PersistenceManagerFactory

Typically applications create one PMF per datastore being utilised. An alternate to persistence-unit
is to use a named PMF , defined in a file META-INF/jdoconfig.xml at the root of the CLASSPATH (this

may mean WEB-INF/classes/META-INRwvhen using a web-application). LetOs see an example of a
jdoconfig.xml

#persistenceunit

<?xml version="1.0" encoding="utf-8"?>
<jdoconfig xmins="http://xmins.jcp.org/xml/ns/jdo/jdoconfig"

E xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"

E xsi:schemalocation="http://xmins.jcp.org/xml/ns/jdo/jdoconfig

E http://xmIns.jcp.org/xml/ns/jdo/jdoconfig_3 2.xsd" version="3.2" >
E <!I-- Datastore Txn PMF -->

E <persistence-manager-factory nameDatastore" >

E <property name4avax.jdo.PersistenceManagerFactoryClass"
value="org.datanucleus.api.jdo.JDOPersistenceManagerFactory" />

E <property name3javax.jdo.option.ConnectionURL"
value="jdbc:mysql://localhost/datanucleus?useServerPrepStmts=false" />

E <property name3javax.jdo.option.ConnectionUserName" value="datanucleus" />
E <property name4avax.jdo.option.ConnectionPassword" value=""/>
E <property namesavax.jdo.option.Optimistic" value="false" />

E <property name=datanucleus.schema.autoCreateAll" value="true" />
E </persistence-manager-factory>

E <!I-- Optimistic Txn PMF -->

E <persistence-manager-factory name*Optimistic" >

E <property name4avax.jdo.PersistenceManagerFactoryClass"
value="org.datanucleus.api.jdo.JDOPersistenceManagerFactory" />

E <property name3javax.jdo.option.ConnectionURL"
value="jdbc:mysql://localhost/datanucleus?useServerPrepStmts=false" />

E <property name3sjavax.jdo.option.ConnectionUserName" value="datanucleus" />
E <property name4avax.jdo.option.ConnectionPassword" value=""/>
E <property namesavax.jdo.option.Optimistic" value="true" />

E <property name=datanucleus.schema.autoCreateAll" value="true" />
E </persistence-manager-factory>

</jdoconfig>

So in this example we have 2 named PMFs. The first is known by the name "Datastore" and utilises
datastore transactions. The second is known by the name "Optimistic" and utilises optimistic
locking. You simply define all properties for the particular PMF within its specification block. And
finally we instantiate our PMF like this

PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory ("Optimistic");

ThatOs it. The PMF we are returned from JDOHelper will have all of the properties defined in META-
INF/jdoconfig.xml under the name of "Optimistic".

PersistenceManagerFactory Properties

An PersistenceManagerFactory is very configurable, and DataNucleus provides many properties to
tailor its behaviour to your persistence needs.

Specifying the datastore properties

With JDO you have 3 ways of specifying the datastore via persistence properties

¥ Specify the connection URL/userName/password(/driverName)

and it will internally create a

DataSource for this URL (with optional connection pooling). This is achieved by specifying

javax.jdo.option.ConnectionURL ,
javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionUserName
and

javax.jdo.option.ConnectionDriverName

¥ Specify the JNDI

javax.jdo.option.ConnectionFactoryName

name of the connectionFactory This is achieved by specifying
, and javax.jdo.option.ConnectionFactory2Name

(for secondary operations)

¥ Specify the DataSource of the connectionFactory
javax.jdo.option.ConnectionFactory

This is achieved by specifying

, and javax.jdo.option.ConnectionFactory2

secondary operations)

The JNDI routes are typically only for use with RDBMS datastores.

it

The "ConnectionURL" value for the different supported datastores is defined in
the Datastore Guide

Standard JDO Properties

Parameter

javax.jdo.PersistenceM
anagerFactoryClass

javax.jdo.option.Conne
ctionFactory

javax.jdo.option.Conne
ctionFactory?2

javax.jdo.option.Conne
ctionFactoryName

javax.jdo.option.Conne
ctionFactory2Name

javax.jdo.option.Conne
ctionURL

javax.jdo.option.Conne
ctionUserName

Description + Values

The name of the PMF implementation.
org.datanucleus.api.jdo.JDOPersistenceManagerFactory Only required if
you have more than one JDO implementation in the CLASSPATH

Instance of a connection factory for transactional connections. This is an
alternative to specifying the ConnectionURL. Only for RDBMS , and it
must be an instance of javax.sql.DataSource. See here

nontransactional connections. This
Only for RDBMS , and
here

Instance of a connection factory for
is an alternative to specifying the ConnectionURL.
it must be an instance of javax.sgl.DataSource. See

The JNDI name for a connection factory for transactional connections.
Only for RDBMS , and it must be a JNDI name that points to a
javax.sgl.DataSource object. See here

The JNDI name for a connection factory for ~ nontransactional
connections. Only for RDBMS , and it must be a JNDI name that points to
a javax.sgl.DataSource object. See here

URL specifying the datastore to use for persistence. Note that this will

define the type of datastore as well as the datastore itself. Please refer to
the Datastore Guide for the URL appropriate for the type of datastore
youOre using.

Username to use for connecting to the DB

optionally

(for

../datastores/datastores.html
persistence.html#datastore_connection
persistence.html#datastore_connection
persistence.html#datastore_connection
persistence.html#datastore_connection
../datastores/datastores.html

Parameter

javax.jdo.option.Conne
ctionPassword

javax.jdo.option.Conne
ctionDriverName

javax.jdo.option.lgnore
Cache

javax.jdo.option.Multit
hreaded

javax.jdo.option.Optimi
stic

javax.jdo.option.Retain
Values

javax.jdo.option.Restor
eValues

javax.jdo.option.Detach
AllOnCommit

javax.jdo.option.CopyO
nAttach

javax.jdo.option.Persist
enceUnitName

javax.jdo.option.Server
TimeZonelD

javax.jdo.option.Name

javax.jdo.option.ReadO
nly

javax.jdo.option.Transa
ctionType

Description + Values

Password to use for connecting to the DB. See
datanucleus.ConnectionPasswordDecrypter
encrypted password here

for a way of providing an

The name of the driver to use for the DB.
for JDBC4+ drivers
require the driver class name still.
context factory

For RDBMS, and not needed
. Note that some 3rd party connection pools do
For LDAP, specifying the initial

Whether to ignore the cache for queries. If the user sets this to true then
the query will evaluate in the datastore, but the instances returned will

be formed from the datastore; this means that if an instance has been
modified and its datastore values match the query then the instance

returned will not be the currently cached (updated) instance, instead an
instance formed using the datastore values. {true, false }

Whether to try to run the PM multithreaded. Note that this is only a hint
to try to allow thread-safe operations on the PM . Users are always
advised to run a PM as single threaded, since some operations are not
currently locked and so could cause issues multi-threaded. {true, false }

Whether to use optimistic locking . {true, false }

Whether to suppress the clearing of values from persistent instances on
transaction completion. {true, false }

Whether persistent object have transactional field values restored when
transaction rollback occurs. {true, false }

Allows the user to select that when a transaction is committed all objects
enlisted in that transaction will be automatically detached. {true, false }

Whether, when attaching a detached object, we create an attached copy
or simply migrate the detached object to attached state { true , false}

Name of a persistence-unit to be found in a persistence.xml file (under
META-INF) that defines the persistence properties to use and the classes
to use within the persistence process.

Id of the TimeZone under which the datastore server is running. If this is
not specified or is set to null it is assumed that the datastore server is
running in the same timezone as the JVM under which DataNucleus is
running.

Name of the named PMF to use. Refers to a PMF defined in META-

INF/jdoconfig.xml

Whether the datastore is read-only or not (fixed in structure and
contents). {true, false }

Type of transaction to use. {RESOURCE_LOCAL, JTA}

persistence.html#locking_optimistic

Parameter

javax.jdo.option.Transa
ctionlsolationLevel

javax.jdo.option.Nontra
nsactionalRead

javax.jdo.option.Nontra
nsactionalWrite

javax.jdo.option.Datast
oreReadTimeoutMillis

javax.jdo.option.Datast
oreWriteTimeoutMillis

javax.jdo.option.Mappi
ng

javax.jdo.mapping.Cata
log

javax.jdo.mapping.Sche
ma

Description + Values

Select the default transaction isolation level for ALL PM factories. Some
databases do not support all isolation levels, refer to your database
documentation. Please refer to the transaction guide {read-uncommitted,
read-committed , repeatable-read, serializable}

Whether to allow nontransactional reads {false, true }

Whether to allow nontransactional writes {false, true }

The timeout to apply to all reads (millisecs), e.g by query or by
PM.getObjectByld(). Only applies if the underlying datastore supports
it {0, A positive value (MILLISECONDS)}

The timeout to apply to all writes (millisecs). Only applies if the
underlying datastore supports it {0, A positive value (MILLISECONDS)}

Name for the ORM MetaData mapping files to use with this PMF. For
example if this is set to "mysql" then the implementation looks for
MetaData mapping files called {classname}-mysql.orm or package-
mysgl.orm. If this is not specified then the JDO implementation assumes
that all is specified in the JDO MetaData file.

Name of the catalog to use by default for all classes persisted using this
PMF. This can be overridden in the MetaData where required, and is
optional. DataNucleus will prefix all table names with this catalog name if
the RDBMS supports specification of catalog names in DDL.

Name of the schema to use by default for all classes persisted using this
PMF. This can be overridden in the MetaData where required, and is
optional. DataNucleus will prefix all table names with this schema name
if the RDBMS supports specification of schema names in DDL.

DataNucleus Datastore Properties

‘-:g:Extensi on
=

DataNucleus provides the following properties for configuring the datastore used by the
PersistenceManagerFactory.

Parameter

datanucleus.Connectio
nURL

datanucleus.Connectio
nUserName

10

Description + Values

URL specifying the datastore to use for persistence. Note that this will

define the type of datastore as well as the datastore itself. Please refer to
the Datastore Guide for the URL appropriate for the type of datastore
youOre using.

Username to use for connecting to the DB

persistence.html#transaction_isolation
../datastores/datastores.html

Parameter

datanucleus.Connectio
nPassword

datanucleus.Connectio
nDriverName

datanucleus.Connectio
nFactory

datanucleus.Connectio
nFactory?2

datanucleus.Connectio
nFactoryName

datanucleus.Connectio
nFactory2Name

datanucleus.Connectio
nPasswordDecrypter

Description + Values

Password to use for connecting to the DB. See property
datanucleus.ConnectionPasswordDecrypter for a way of providing an
encrypted password here

The name of the (JDBC) driver to use for the DB;
the driver name, but not needed for JDBC 4+ drivers
specifying the initial context factory

For RDBMS, defining
, For LDAP,

Instance of a connection factory for transactional connections. This is an
alternative to datanucleus.ConnectionURL . Only for RDBMS , and it
must be an instance of javax.sql.DataSource. See Data Sources.

nontransactional connections. This
. Only for RDBMS , and
Data Sources.

Instance of a connection factory for
is an alternative to datanucleus.ConnectionURL
it must be an instance of javax.sgl.DataSource. See

The JNDI name for a connection factory for transactional connections.
Only for RDBMS , and it must be a JNDI name that points to a
javax.sgl.DataSource object. See Data Sources.

The JNDI name for a connection factory for ~ nontransactional
connections. Only for RDBMS , and it must be a JNDI name that points to
a javax.sgl.DataSource object. See Data Sources.

Name of a class that implements
org.datanucleus.store.ConnectionEncryptionProvider and should only be
specified if the password is encrypted in the persistence properties

DataNucleus Persistence Properties

‘-:g:Extensi on
=

DataNucleus provides the following properties for configuring general persistence handling used
by the PersistenceManagerFactory.

Parameter

datanucleus.lgnoreCac
he

datanucleus.Multithrea
ded

datanucleus.Optimistic

Description + Values

Whether to ignore the cache for queries. If the user sets this to true then
the query will evaluate in the datastore, but the instances returned will

be formed from the datastore; this means that if an instance has been
modified and its datastore values match the query then the instance

returned will not be the currently cached (updated) instance, instead an
instance formed using the datastore values. {true, false }

Whether to run the PM multithreaded. Note that this is only a hint to

try to allow thread-safe operations on the PM . Users are always
advised to run a PM as single threaded, since some operations are not
currently locked and so could cause issues multi-threaded. {true, false }

Whether to use optimistic locking . {true, false }

11

persistence.html#datasource
persistence.html#datasource
persistence.html#datasource
persistence.html#datasource
persistence.html#locking_optimistic

Parameter

datanucleus.RetainValu
es

datanucleus.RestoreVal
ues

datanucleus.Mapping

datanucleus.mapping.C
atalog

datanucleus.mapping.S
chema

datanucleus.Tenantld

datanucleus.TenantPro
vider

datanucleus.CurrentUs
er

datanucleus.CurrentUs
erProvider

datanucleus.DetachAll
OnCommit

datanucleus.detachAllO
nRollback

datanucleus.CopyOnAtt
ach

12

Description + Values

Whether to suppress the clearing of values from persistent instances on
transaction completion. {true, false }

Whether persistent object have transactional field values restored when
transaction rollback occurs. {true, false }

Name for the ORM MetaData mapping files to use with this PMF. For
example if this is set to "mysql" then the implementation looks for
MetaData mapping files called {classname}-mysql.orm or package-
mysgl.orm. If this is not specified then the JDO implementation assumes
that all is specified in the JDO MetaData file.

Name of the catalog to use by default for all classes persisted using this
PMF. This can be overridden in the MetaData where required, and is
optional. DataNucleus will prefix all table names with this catalog name if
the RDBMS supports specification of catalog names in DDL. RDBMS
datastores only

Name of the schema to use by default for all classes persisted using this
PMF. This can be overridden in the MetaData where required, and is
optional. DataNucleus will prefix all table names with this schema name

if the RDBMS supports specification of schema names in DDL. RDBMS
datastores only

String id to use as a discriminator on all persistable class tables to restrict
data for the tenant using this application instance (aka multi-tenancy via
discriminator). RDBMS, MongoDB, HBase, Neo4j, Cassandra datastores
only

Instance of a class that implements
org.datanucleus.store.schema.MultiTenancyProvider which will return the
tenant name to use for each call. RDBMS, MongoDB, HBase, Neo4j,
Cassandra datastores only

String defining the current user for the persistence process. Used by
auditing . RDBMS datastores only

Instance of a class that implements
org.datanucleus.store.schema.CurrentUserProvider which will return the
current user to use for each call. Used by auditing . RDBMS datastores only

Allows the user to select that when a transaction is committed all objects
enlisted in that transaction will be automatically detached. {true, false }

Allows the user to select that when a transaction is rolled back all objects
enlisted in that transaction will be automatically detached. {true, false }

Whether, when attaching a detached object, we create an attached copy
or simply migrate the detached object to attached state { true , false}

persistence.html#multitenancy
persistence.html#multitenancy
mapping.html#auditing
mapping.html#auditing

Parameter

datanucleus.attachSam
eDatastore

datanucleus.detachAs
Wrapped

datanucleus.DetachOnC
lose

datanucleus.detachmen
tFields

datanucleus.maxFetch
Depth

datanucleus.detachedSt
ate

datanucleus.ServerTim
eZonelD

datanucleus.Persistenc
eUnitName

Description + Values

When attaching an object DataNucleus by default assumes that youOre
attaching to the same datastore as you detached from. DataNucleus does
though allow you to attach to a different datastore (for things like
replication). Set thisto false if you want to attach to a different datastore
to what you detached from. This property is also useful if you are
attaching and want it to check for existence of the object in the datastore

before attaching, and create it if not present (true assumes that the object

exists). {true , false}

When detaching, any mutable second class objects (Collections, Maps,
Dates etc) are typically detached as the basic form (so you can use them
on client-side of your application). This property allows you to select to
detach as wrapped objects. It only works with "detachAllOnCommit"
situations (not with detachCopy) currently {true, false }

This allows the user to specify whether, when a PM is closed, that all
objects in the L1 cache are automatically detached. Users are

recommended to use the datanucleus.DetachAllOnCommit wherever

possible . This will not work in JCA mode. { false , true}

When detaching you can control what happens to loaded/unloaded fields
of the FetchPlan. The default for JDO is to load any unloaded fields of the
current FetchPlan before detaching. You can also unload any loaded

fields that are not in the current FetchPlan (so you only get the fields you
require) as well as a combination of both options { load-fields , unload-
fields, load-unload-fields}

Specifies the default maximum fetch depth to use for fetching operations.
The JDO spec defines a default of 1, meaning that only the first level of
related objects will be fetched by default. {-1, 1, positive integer (non-
zero)}

Allows control over which mechanism to use to determine the fields to be
detached. By default DataNucleus uses the defined "fetch-groups”. JPA
doesnOt have that (although it is an option with DataNucleus), so we also
allow loaded which will detach just the currently loaded fields, and all
which will detach all fields of the object. Be careful with this option since

it, when used with maxFetchDepth of -1 will detach a whole object graph!
{fetch-groups , all, loaded}

Id of the TimeZone under which the datastore server is running. If this is
not specified or is set to null it is assumed that the datastore server is
running in the same timezone as the JVM under which DataNucleus is
running.

Name of a persistence-unit to be found in a persistence.xml file (under
META-INF) that defines the persistence properties to use and the classes
to use within the persistence process.

13

Parameter

datanucleus.Persistenc
eUnitLoadClasses

datanucleus.persistenc
eXmlFilename

datanucleus.datastoreR
eadTimeout

datanucleus.datastore
WriteTimeout

datanucleus.singletonP
MFForName

datanucleus.allowListe
nerUpdateAfterInit

datanucleus.cdi.bean.m
anager

datanucleus.jmxType

datanucleus.deletionPo
licy

datanucleus.identityStr
ingTranslatorType

datanucleus.identityKe
yTranslatorType

14

Description + Values

Used when we have specified the persistence-unit name for a PMF and
where we want the datastore "tables" for all classes of that persistence-
unit loading up into the StoreManager. Defaults to false since some
databases are slow so such an operation would slow down the startup
process. {true, false }

URL name of the persistence.xml file that should be used instead of using
META-INF/persistence.xml.

The timeout to apply to all reads (millisecs), e.g by query or by
PM.getObjectByld(). Only applies if the underlying datastore supports
it {0, A positive value (MILLISECONDS)}

The timeout to apply to all writes (millisecs), e.g by makePersistent, or by
an update. Only applies if the underlying datastore supports it {0, A
positive value (MILLISECONDS)}

Whether to only allow a singleton PMF for a particular name (the name
can be either the name of the PMF in jdoconfig.xml , or the name of the
persistence-unit). If a subsequent request is made for a PMF with a name
that already exists then a warning will be logged and the original PMF
returned. {true, false }

Whether you want to be able to add/remove listeners on the JDO PMF
after it is marked as not configurable (when the first PM is created). The
default matches the JDO spec, not allowing changes to the listeners in use.
{true, false}

Specifies a CDI BeanManageobject that will be used to allow injection of
dependencies into AttributeConverter objects.

Which JMX server to use when hooking into JMX. Please refer to the
Monitoring Guide {default, mx4j}

Allows the user to decide the policy when deleting objects. The default is
"JDO2" which firstly checks if the field is dependent and if so deletes
dependents, and then for others will null any foreign keys out. The
problem with this option is that it takes no account of whether the user
has also defined <foreign-key> elements, so we provide a "DataNucleus"
mode that does the dependent field part first and then if a FK element is
defined will leave it to the FK in the datastore to perform any actions, and
otherwise does the nulling. { JDO2, DataNucleus}

You can allow identities inputto ~ pm.getObjectByld(id) be translated into
valid JDO ids if there is a suitable translator. See Identity String

You can allow identities inputto ~ pm.getObjectByld(cls, key) be translated
into valid JDO ids if there is a suitable key translator. See Identity Key

persistence.html#monitoring
../extensions/extensions.html#identitystringtranslator
../extensions/extensions.html#identitykeytranslator

Parameter

datanucleus.datastorel
dentity Type

datanucleus.executionC
ontext.maxldle

datanucleus.executionC
ontext.reaperThread

datanucleus.executionC
ontext.closeActive TxXAct
ion

datanucleus.objectProv
ider.className

datanucleus.type.wrap
per.basis

datanucleus.uselmplem
entationCreator

datanucleus.manageRel
ationships

datanucleus.manageRel
ationshipsChecks

datanucleus.persistenc
eByReachabilityAtCom
mit

datanucleus.classLoade
rResolverName

Description + Values

Which "datastore-identity" class plugin to use to represent datastore

= Extension
identities. Refer to Datastore Identity @ ~Point

{datanucleus , kodo, xcalia, {user-supplied plugin}}

for details.

Specifies the maximum number of ExecutionContext objects that are
pooled ready for use { 20, integer value greater than 0}

Whether to start a reaper thread that continually monitors the pool of
ExecutionContext objects and frees them off after they have surpassed
their expiration period { false , true}

Defines the action if a PM is closed and there is an active transaction
present { rollback , exception}

Class name for the ObjectProvider to use when managing object state.
The default for RDBMS is ReferentialStateManagerimpl, and is
StateManagerIimpl for all other datastores.

Whether to use the "instantiated" type of a field, or the "declared" type of
a field to determine which wrapper to use when the field is SCO mutable.
{instantiated , declared}

Whether to allow use of the implementation-creator (feature of JDO to
dynamically create implementations of persistent interfaces). { true ,
false}

This allows the user control over whether DataNucleus will try to manage
bidirectional relations, correcting the input objects so that all relations

are consistent. This process runs when flush()/commit() is called. You can
set it to false if you always set both sides of a relation when
persisting/updating. { true , false}

This allows the user control over whether DataNucleus will make
consistency checks on bidirectional relations. If
"datanucleus.managedRelationships" is not selected then no checks are
performed. If a consistency check fails at flush()/commit() then a
JDOUserException is thrown. You can set it to
consistency checks. { true , false}

Whether to run the "persistence-by-reachability” algorithm at commit()
time. This means that objects that were reachable at a call to
makePersistent() but that are no longer persistent will be removed from
persistence. For performance improvements, consider turning this off.
{true , false}

Name of a ClassLoaderResolver to use in class loading. DataNucleus
provides a default that loosely follows the JDO specification for class
loading. This property allows the user to override this with their own

class better suited to their own loading requirements. { datanucleus
{name of class-loader-resolver plugin}}

false if you want to omit all

15

../extensions/extensions.html#store_datastoreidentity
../extensions/extensions.html#store_datastoreidentity

Parameter

datanucleus.primaryCl
assLoader

datanucleus.plugin.plu
ginRegistryClassName

datanucleus.plugin.plu
ginRegistryBundleChec
k

datanucleus.plugin.allo
wUserBundles

datanucleus.plugin.vali
datePlugins

datanucleus.findObject.
validateWhenCached

datanucleus.findObject.
typeConversion

Description + Values

Sets a primary classloader for situations where a primary classloader is
not accessible. This ClassLoader is used when the class is not found in the
default ClassLoader search path. As example, when the database driver is
loaded by a different ClassLoader not in the ClassLoader search path for
JDO specification.

Name of a class that acts as registry for plug-ins. This defaults to
org.datanucleus.plugin.NonManagedPluginRegistry (for when not using
OSGi). If you are within an OSGi environment you can set this to
org.datanucleus.plugin.OSGiPluginRegistry

Defines what happens when plugin bundles are found and are duplicated
{EXCEPTION, LOG, NONE}

Defines whether user-provided bundles providing DataNucleus
extensions will be registered. This is only respected if used in a non-
Eclipse OSGi environment. { true , false}

Defines whether a validation step should be performed checking for
plugin dependencies etc. This is only respected if used in a non-Eclipse
OSGi environment. { false , true}

When a user calls getObjectByld (JDO) and they request validation this
allows the turning off of validation when an object is found in the (L2)
cache. Can be useful for performance reasons, but should be used with
care. {true , false}

When calling PM.getObjectByld(Class, Object) the second argument really
ought to be the exact type of the primary-key field. This property enables
conversion of basic numeric types (Long, Integer, Short) to the
appropriate numeric type (if the PK is a numeric type). { true , false}

DataNucleus Schema Properties

‘-@Extensi on
=

DataNucleus provides the following properties for configuring schema handling used by the
PersistenceManagerFactory.

Parameter

datanucleus.schema.au
toCreateAll

datanucleus.schema.au
toCreateDatabase

16

Description + Values

Whether to automatically generate any schema, tables, columns,
constraints that donOt exist. Please refer to the Schema Guide for more
details. {true, false}

Whether to automatically generate any database (catalog/schema) that
doesnOt exist. This depends very much on whether the datastore in
guestion supports this operation. Please refer to the Schema Guide for
more details. {true, false }

persistence.html#schema
persistence.html#schema

Parameter

datanucleus.schema.au
toCreateTables

datanucleus.schema.au
toCreateColumns

datanucleus.schema.au
toCreateConstraints

datanucleus.autoCreate
WarnOnError

datanucleus.schema.val
idateAll

datanucleus.schema.val
idateTables

datanucleus.schema.val
idateColumns

datanucleus.schema.val
idateConstraints

datanucleus.readOnlyD
atastore

datanucleus.readOnlyD
atastoreAction

datanucleus.generateSc
hema.database.mode

datanucleus.generateSc
hema.scripts.mode

datanucleus.generateSc
hema.scripts.create.tar
get

datanucleus.generateSc
hema.scripts.drop.targe
t

Description + Values

Whether to automatically generate any tables that donOt exist. Please
refer to the Schema Guide for more details. {true, false }

Whether to automatically generate any columns that donOt exist. Please
refer to the Schema Guide for more details. {true, false }

Whether to automatically generate any constraints that donOt exist. Please
refer to the Schema Guide for more details. {true, false }

Whether to only log a warning when errors occur during the auto-
creation/validation process. Please use with care since if the schema is
incorrect errors will likely come up later and this will postpone those

error checks til later, when it may be too late!! {true, false}

Alias for defining datanucleus.schema.validateTables ,
datanucleus.schema.validateColumns and
datanucleus.schema.validateConstraints

Schema Guide for more details. {true, false }

Whether to validate tables against the persistence definition. Please refer
to the Schema Guide for more details. {true, false }

Whether to validate columns against the persistence definition. This
refers to the column detail structure and NOT to whether the column
exists or not. Please refer to the Schema Guide for more details. {true,
false }

Whether to validate table constraints against the persistence definition.
Please refer to the Schema Guide for more details. {true, false }

Whether the datastore is read-only or not (fixed in structure and
contents). {true, false }

What happens when a datastore is read-only and an object is attempted
to be persisted. { EXCEPTION, IGNORE}

Whether to perform any schema generation to the database at startup.
Will process the schema for all classes that have metadata loaded at
startup (i.e the classes specified in a persistence-unit). {create, drop, drop-
and-create, none }

Whether to perform any schema generation into scripts at startup. Will
process the schema for all classes that have metadata loaded at startup
(i.e the classes specified in a persistence-unit). {create, drop, drop-and-
create, none }

Name of the script file to write to if doing a "create" with the target as
"scripts" { datanucleus-schema-create.ddl , {filename}}

Name of the script file to write to if doing a "drop” with the target as
"scripts" { datanucleus-schema-drop.ddl , {filename}}

as all true. Please refer to the

17

persistence.html#schema
persistence.html#schema
persistence.html#schema
persistence.html#schema
persistence.html#schema
persistence.html#schema
persistence.html#schema

Parameter

datanucleus.generateSc
hema.scripts.create.sou
rce

datanucleus.generateSc
hema.scripts.drop.sour
ce

datanucleus.generateSc
hema.scripts.load

datanucleus.identifierF
actory

datanucleus.identifier.
namingFactory

datanucleus.identifier.c
ase

datanucleus.identifier.
wordSeparator

datanucleus.identifier.t
ablePrefix

datanucleus.identifier.t
ableSuffix

datanucleus.defaultinh
eritanceStrategy

datanucleus.store.allow
ReferencesWithNolmpl
ementations

Description + Values

Name of a script file to run to create tables. Can be absolute filename, or
URL string

Name of a script file to run to drop tables. Can be absolute filename, or
URL string

Name of a script file to run to load data into the schema. Can be absolute
filename, or URL string

Name of the identifier factory to use when generating table/column
names etc (RDBMS datastores only). See also the Datastore Identifier
Guide. {datanucleusl, datanucleus2 , jpox, jpa, {user-plugin-name}}

Name of the identifier NamingFactory to use when generating
table/column names etc (non-RDBMS datastores). { datanucleus2 , jpa,
{user-plugin-name}}

Which case to use in generated table/column identifier names. See also
the Datastore Identifier Guide . RDBMS defaults to UPPERCASE. Cassandra
defaults to lowercase {UPPERCASE, LowerCase, MixedCase}

Separator character(s) to use between words in generated identifiers.
Defaults to "_" (underscore)

Prefix to be prepended to all generated table names (if the identifier
factory supports it)

Suffix to be appended to all generated table names (if the identifier
factory supports it)

How to choose the inheritance strategy default for classes where no

strategy has been specified. With JDO2this will be "new-table" for base
classes and "superclass-table” for subclasses. With TABLE_PER_CLASShis
will be "new-table" for all classes. { JDO2, TABLE_PER_CLASS}

Whether we permit a reference field (1-1 relation) or collection of
references where there are no defined implementations of the reference.
False means that an exception will be thrown during schema generation
for the field {true, false }

DataNucleus Transaction Properties

‘-:g:Extensi on
=

DataNucleus provides the following properties for configuring transaction handling used by the

PersistenceManagerFactory.

18

mapping.html#datastore_identifiers
mapping.html#datastore_identifiers
mapping.html#datastore_identifiers

Parameter

datanucleus.transactio
n.type

datanucleus.transactio
n.isolation

datanucleus.transactio
n.jta.transactionManag
erLocator

datanucleus.transactio
n.jta.transactionManag
erJNDI

datanucleus.transactio
n.nontx.read

datanucleus.transactio
n.nontx.write

datanucleus.transactio
n.nontx.atomic

datanucleus.SerializeRe

ad

datanucleus.flush.auto.
objectLimit

datanucleus.flush.mode

Description + Values

Type of transaction to use. If running under JavaSE the default is
RESOURCE_LOCAL, and if running under JavakE the default is JTA.
{RESOURCE_LOCAL, JTA}

Select the default transaction isolation level for ALL PM factories. Some
databases do not support all isolation levels, refer to your database
documentation. Please refer to the transaction guide . {read-uncommitted,
read-committed , repeatable-read, serializable}

Selects the locator to use when using JTA transactions so that
DataNucleus can find the JTA TransactionManager. If this isnOt specified
and using JTA transactions DataNucleus will search all available locators
which could have a performance impact. See JTA Locator

= Extension
.,;-“.@Fnlnt . If specifying "custom_jndi" please also specify

"datanucleus.transaction.jta.transactionManagerJNDI" {
jonas, jotm, oc4j, orion, resin, sap, sun, weblogic, websphere, custom_jndi,
alias of a JTA transaction locator}

Name of a JNDI location to find the JTA transaction manager from (when
using JTA transactions). This is for the case where you know where it is
located. If not used DataNucleus will try certain well-known locations

Whether to allow nontransactional reads {false, true }

Whether to allow nontransactional writes {false, true }

When a user invokes a nontransactional operation they can choose for
these changes to go straight to the datastore (atomically) or to wait until
either the next transaction commit, or close of the PM. Disable this if you
want operations to be processed with the next real transaction. { true ,
false}

With datastore transactions you can apply locking to objects as they are
read from the datastore. This setting applies as the default for all PMs
obtained. You can also specify this on a per-transaction or per-query basis
(which is often better to avoid deadlocks etc) {true, false }

For use when using (DataNucleus) "AUTO" flush mode (see
datanucleus.flush.mode) and is the limit on number of dirty objects
before a flush to the datastore will be performed. { 1, positive integer}

Sets when persistence operations are flushed to the datastore. MANUAL
means that operations will be sent only on flush()/commit(). QUERY
means that operations will be sent on flush()/commit() and just before

guery execution. AUTO means that operations will be sent immediately
(auto-flush) {MANUAL, QUERY, AUTO}

autodetect , jboss,

19

persistence.html#transaction_isolation
../extensions/extensions.html#jta_locator
../extensions/extensions.html#jta_locator

Parameter

datanucleus.flush.opti
mised

datanucleus.connection
PoolingType

datanucleus.connection
PoolingType.nontx

datanucleus.connection
.nontx.releaseAfterUse

datanucleus.connection
.singleConnectionPerEx
ecutionContext

datanucleus.connection
.resourceType

datanucleus.connection
.resourceType?2

Description + Values

Whether to use an "optimised" flush process, changing the order of
persists for referential integrity (as used by RDBMS typically), or whether
to just build a list of deletes, inserts and updates and do them in batches.
RDBMS defaults to true, whereas other datastores default to false (due to
not having referential integrity, so gaining from batching {true, false}

This property allows you to utilise a 3rd party software package for

enabling connection pooling. When using RDBMS you can select from
DBCP2, C3P0, Proxool, BoneCP, etc. You must have the 3rd party jars in the
CLASSPATH to use these options. Please refer to the Connection Pooling
guide for details. {None, dbcp2-builtin , DBCP2, C3P0, Proxool, BoneCP,
HikariCP, Tomcat, {others}}

This property allows you to utilise a 3rd party software package for

enabling connection pooling for nontransactional connections using a
DataNucleus plugin. If you donOt specify this value but do define the

above value then that is taken by default. Refer to the above property for
more details. {None, dbcp2-builtin , DBCP2, C3P0, Proxool, BoneCP,
HikariCP, Tomcat, {others}}

Applies only to non-transactional connections and refers to whether to

re-use (pool) the connection internally for later use. The default

behaviour is to close any such non-transactional connection after use. If
doing significant non-transactional processing in your application then

this may provide performance benefits, but be careful about the number

of connections being held open (if one is held open per PM). { true , false}

With a PM we normally allocate one connection for a transaction and
close it after the transaction, then a different connection for
nontransactional ops. This flag acts as a hint to the store plugin to obtain
and retain a single connection throughout the lifetime of the PM. {true,
false }

Resource Type for primary connection {JTA, RESOURCE_LOCAL}

Resource Type for secondary connection {JTA, RESOURCE_LOCAL}

DataNucleus Cache Properties

‘-@Extensi on
=

DataNucleus provides the following properties for configuring cache handling used by the
PersistenceManagerFactory.

20

persistence.html#connection_pooling
persistence.html#connection_pooling

Parameter

datanucleus.cache.colle
ctions

datanucleus.cache.colle
ctions.lazy

datanucleus.cache.level
1l.type

datanucleus.cache.level
2.type

datanucleus.cache.level
2.mode

datanucleus.cache.level
2.storeMode

datanucleus.cache.level
2.retrieveMode

datanucleus.cache.level
2.updateMode

datanucleus.cache.level
2.cacheName

datanucleus.cache.level
2.maxSize

datanucleus.cache.level
2.clearAtClose

datanucleus.cache.level
2.batchSize

datanucleus.cache.level
2.expiryMillis

Description + Values

SCO collections can be used in 2 modes in DataNucleus. You can allow
DataNucleus to cache the collections contents, or you can tell

DataNucleus to access the datastore for every access of the SCO collection.
The default is to use the cached collection. { true , false}

When using cached collections/maps, the elements/keys/values can be
loaded when the object is initialised, or can be loaded when accessed
(lazy loading). The default is to use lazy loading when the field is not in
the current fetch group, and to not use lazy loading when the field is in
the current fetch group. {true, false}

Name of the type of Level 1 cache to use. Defines the backing map. See
also the Level 1 Cache docs {soft , weak, strong, {your-plugin-name}}

Name of the type of Level 2 Cache to use. Can be used to interface with
external caching products. Use "none" to turn off L2 caching. See also the
Level 2 Cache docs {none, soft , weak, javax.cache, coherence, ehcache,
ehcacheclassbhased, cacheonix, oscache, redis, spymemcached,
xmemcached, {your-plugin-name}}

The mode of operation of the L2 cache, deciding which entities are

cached. The default (UNSPECIFIED) is the same as DISABLE_SELECTIVE.
See also the Level 2 Cache docs {NONE, ALL, ENABLE_SELECTIVE,
DISABLE_SELECTIVE,UNSPECIFIED }

Whether to use the L2 cache for storing values (set to "bypass" to not
store within the context of the operation) { use, bypass}

Whether to use the L2 cache for retrieving values (set to "bypass" to not
retrieve from L2 cache within the context of the operation, i.e go to the
datastore) { use, bypass}

When the objects in the L2 cache should be updated. Defaults to updating
at commit AND when fields are read from a datastore object { commit-
and-datastore-read , commit}

Name of the cache. This is for use with plugins such as the Tangosol cache
plugin for accessing the particular cache. Please refer to the Level 2 Cache
docs

Max size for the L2 cache (supported by weak, soft, coherence, ehcache,
ehcacheclassbhased, javax.cache) { -1, integer value}

Whether the close of the L2 cache (when the PMF closes) should also clear
out any objects from the underlying cache mechanism. By default it will
clear objects out but if the user has configured an external cache product
and wants to share objects across multiple PMFs then this can be set to
false. {true , false}

When objects are added to the L2 cache at commit they are typically
batched. This property sets the max size of the batch. { 100, integer value}

Some caches (Cacheonix, Redis) allow specification of an expiration time
for objects in the cache. This property is the expiry timeout in

milliseconds (will be unset meaning use cache default). { -1, integer value}

21

persistence.html#level1_cache
persistence.html#cache_level2
persistence.html#cache_level2
persistence.html#cache_level2
persistence.html#cache_level2

Parameter

datanucleus.cache.level
2.readThrough

datanucleus.cache.level
2.writeThrough

datanucleus.cache.level
2.storeByValue

datanucleus.cache.level
2.statisticsEnabled

datanucleus.cache.quer
yCompilation.type

datanucleus.cache.quer
yCompilation.cacheNa
me

datanucleus.cache.quer
yCompilationDatastore.

type

datanucleus.cache.quer
yCompilationDatastore.
cacheName

datanucleus.cache.quer
yResults.type

datanucleus.cache.quer
yResults.cacheName

datanucleus.cache.quer
yResults.clearAtClose

datanucleus.cache.quer
yResults.maxSize

datanucleus.cache.quer
yResults.expiryMillis

Description + Values

With javax.cache L2 caches you can configure the cache to allow read-
through { true , false}

With javax.cache L2 caches you can configure the cache to allow write-
through { true , false}

With javax.cache L2 caches you can configure the cache to store by value
(as opposed to by reference) { true , false}

With javax.cache L2 caches you can configure the cache to enable
statistics gathering (accessible via JIMX) { false , true}

Type of cache to use for caching of generic query compilations {none,
soft , weak, strong, javax.cache, {your-plugin-name}}

Name of cache for generic query compilation. Used by javax.cache
variant. {{your-cache-name}, datanucleus-query-compilation }

Type of cache to use for caching of datastore query compilations {none,
soft , weak, strong, javax.cache, {your-plugin-name}}

Name of cache for datastore query compilation. Used by javax.cache
variant. {{your-cache-name}, datanucleus-query-compilation-
datastore }

Type of cache to use for caching query results. {none, soft, weak, strong,
javax.cache, redis, spymemcached, xmemcached, cacheonix, {your-
plugin-name}}

Name of cache for caching the query results. {
name}}

datanucleus-query , {your-

Whether the close of the Query Results cache (when the PMF closes)
should also clear out any objects from the underlying cache mechanism.
By default it will clear query results out. { true , false}

Max size for the query results cache (supported by weak, soft, strong) { -1,
integer value}

Expiry in milliseconds for objects in the query results cache (cacheonix,
redis) { -1, integer value}

DataNucleus Bean Validation Properties

‘-:g:Extensi on
=

DataNucleus provides the following properties for configuring bean validation handling used by
the PersistenceManagerFactory.

22

Parameter

datanucleus.validation.
mode

datanucleus.validation.
group.pre-persist

datanucleus.validation.
group.pre-update

datanucleus.validation.
group.pre-remove

datanucleus.validation.
factory

Description + Values

Determines whether the automatic lifecycle event validation is in effect.
{auto , callback, none}

The classes to validation on pre-persist callback

The classes to validation on pre-update callback

The classes to validation on pre-remove callback

The validation factory to use in validation

DataNucleus Value Generation Properties

‘-@Extensi on
=

DataNucleus provides the following properties for configuring value generation handling used by
the PersistenceManagerFactory.

Parameter

datanucleus.valuegener
ation.transactionAttrib
ute

datanucleus.valuegener
ation.transactionlsolati
on

datanucleus.valuegener
ation.sequence.allocati
onSize

datanucleus.valuegener
ation.increment.allocati
onSize

Description + Values

Whether to use the PM connection or open a new connection. Only used
by value generators that require a connection to the datastore. { NEW,
EXISTING}

Select the default transaction isolation level for identity generation. Must
have datanucleus.valuegeneration.transactionAttribute
databases do not support all isolation levels, refer to your database
documentation and the transaction guide {read-uncommitted,
committed |, repeatable-read, serializable}

read-

Sets the default allocation size for any "sequence” value strategy. You can
configure each member strategy individually but they fall back to this
value if not set. {10, (integer value)}

Sets the default allocation size for any "increment"” value strategy. You can
configure each member strategy individually but they fall back to this
value if not set. {10, (integer value)}

DataNucleus Metadata Properties

‘-’fg:Extensi on
B

DataNucleus provides the following properties for configuring metadata handling used by the
PersistenceManagerFactory.

set to New Some

23

persistence.html#transaction_isolation

Parameter

datanucleus.metadata.]
doFileExtension

datanucleus.metadata.o
rmFileExtension

datanucleus.metadata.
doqueryFileExtension

datanucleus.metadata.a
IwaysDetachable

datanucleus.metadata.l
istener.object

datanucleus.metadata.i
gnoreMetaDataForMiss
ingClasses

datanucleus.metadata.x
ml.validate

datanucleus.metadata.x
ml.namespaceAware

datanucleus.metadata.x
ml.allowJDO1 0

datanucleus.metadata.a
llowXML

datanucleus.metadata.a
llowAnnotations

datanucleus.metadata.a
llowLoadAtRuntime

datanucleus.metadata.a
utoregistration

datanucleus.metadata.s
upportORM

24

Description + Values

Suffix for JIDO MetaData files. Provides the ability to override the default
suffix and also to have one PMF with one suffix and another with a
different suffix, hence allowing differing persistence of the same classes
using different PMFOs. { jdo , {file suffix}}

Suffix for ORM MetaData files. Provides the ability to override the default
suffix and also to have one PMF with one suffix and another with a
different suffix, hence allowing differing persistence of the same classes
using different PMFOs. { orm , {file suffix}}

Suffix for IDO Query MetaData files. Provides the ability to override the
default suffix and also to have one PMF with one suffix and another with
a different suffix, hence allowing differing persistence of the same classes
using different PMFOs. { jdoquery , {file suffix}}

Whether to treat all classes as detachable irrespective of input metadata.
See also "alwaysDetachable" enhancer option. { false , true}

Property specifying a org.datanucleus.metadata.MetaDataListener object
that will be registered at startup and will receive notification of all
metadata load activity. { false , true}

Whether to ignore classes where metadata is specified. Default (false) is
to throw an exception. { false , true}

Whether to validate the MetaData file(s) for XML correctness (against the
DTD) when parsing. {true, false }

Whether to allow for XML namespaces in metadata files. The vast
majority of sane people should not need this at all, but itOs enabled by
default to allow for those that do. { true , false}

Whether we should allow XML metadata to be specified in locations from
the JDO 1.0.0 spec. {false , true}

Whether to allow XML metadata. Turn this off if not using any, for
performance. { true , false}

Whether to allow annotations metadata. Turn this off if not using any, for
performance. { true , false}

Whether to allow load of metadata at runtime. This is intended for the
situation where you are handling persistence of a persistence-unit and
only want the classes explicitly specified in the persistence-unit. {
false}

true ,

Whether to use the JDO auto-registration of metadata. Turned on by
default { true , false}

Whether to support "orm" mapping files. By default we use what the
datastore plugin supports. This can be used to turn it off when the
datastore supports it but we dont plan on using it (for performance) {
true , false}

Parameter

datanucleus.metadata.d
efaultNullable

datanucleus.metadata.s
canner

datanucleus.metadata.
useDiscriminatorForSi
ngleTable

datanucleus.metadata.]
avaxValidationShortcut
S

Description + Values

Whether the default nullability for the fields should be nullable or non-
nullable when no metadata regarding field nullability is specified at field
level. The default is nullable i.e. to allow null values. { true , false}

Name of a class to use for scanning the classpath for persistent classes
when using a persistence.xml . The class must implement the interface
org.datanucleus.metadata.MetaDataScanner

With JPA the spec implies that all use of "single-table" inheritance will use
a discriminator. DataNucleus up to and including 5.0.2 relied on the user
defining the discriminator, whereas it now will add one if not supplied.

Set this to false to get behaviour asitwas ! 5.0.2{ true , false}

Whether to process javax.validation ~ @NotNulland @Sizeannotations as
their JIDO @Columequivalent. { false , true}

DataNucleus Autostart Properties

‘-@Extensi on
=

DataNucleus provides the following properties for configuring auto-start mechanism handling used

by the PersistenceManagerFactory.

Parameter

datanucleus.autoStartM
echanism

datanucleus.autoStartM
echanismMode

datanucleus.autoStartM
echanismXmlFile

Description + Values

How to initialise DataNucleus at startup. This allows DataNucleus to read
in from some source the classes that it was persisting for this data store
the previous time. XML stores the information in an XML file for this
purpose. SchemaTable (only for RDBMS) stores a table in the RDBMS for
this purpose. Classeslooks at the property
datanucleus.autoStartClassNames for a list of classes. MetaData looks at
the property datanucleus.autoStartMetaDataFiles for a list of metadata
files The other option (default) is None (start from scratch each time).
Please refer to the Auto-Start Mechanism Guide for more details.
Alternatively just use persistence.xml to specify the classes and/or
mapping files to load at startup. Note also that "Auto-Start" is for
RUNTIME use only (not during SchemaTool). { None, XML, Classes,
MetaData, SchemaTable}

The mode of operation of the auto start mode. Currently there are 3
values. "Quiet" means that at startup if any errors are encountered, they
are fixed quietly. "Ignored" means that at startup if any errors are
encountered they are just ignored. "Checked" means that at startup if any
errors are encountered they are thrown as exceptions. {Checked, Ignored,

Quiet }

Filename used for the XML file for AutoStart when using "XML" Auto-
Start Mechanism

25

persistence.html#autostart

Parameter

datanucleus.autoStartCl
assNames

datanucleus.autoStartM
etaDataFiles

Description + Values

This property specifies a list of classes (comma-separated) that are loaded
at startup when using the "Classes" Auto-Start Mechanism.

This property specifies a list of metadata files (comma-separated) that are
loaded at startup when using the "MetaData" Auto-Start Mechanism.

DataNucleus Query Properties

‘-:g:Extensi on
=

DataNucleus provides the following properties for configuring query handling used by the
PersistenceManagerFactory.

Parameter

datanucleus.query.flus
hBeforeExecution

datanucleus.query.clos
eable

datanucleus.query.useF
etchPlan

datanucleus.query.com
pileOptimiseVarThis

datanucleus.query.jdoq
l.allowAll

datanucleus.query.sgl.a
llowAll

datanucleus.query.jpgl.
allowRange

datanucleus.query.chec
kUnusedParameters

26

Description + Values

This property can enforce a flush to the datastore of any outstanding
changes just before executing all queries. If using optimistic locking any
updates are typically held back until flush/commit and so the query
would otherwise not take them into account. {true, false }

When set to false (the default) will simply close all results when close() is
called. When set to true it will also close the query object making it
unusable, releasing all resources as well. Also applies to a JDO Extent use
of close(). {true, false }

Whether to use the FetchPlan when executing a JDOQL query. The default
is to use it which means that the relevant fields of the object will be
retrieved. This allows the option of just retrieving the identity columns.
{true , false}

This optimisation will detect and try to fix a query clause like "var == this"
(which is pointless). It is not very advanced but may help in some
situations {true, false }

javax.jdo.query.JDOQL queries are allowed by JDO only to run SELECT
gueries. This extension permits to bypass this limitation so that
DataNucleus extension bulk "update" and bulk "delete" can be run. {
true}

javax.jdo.query.SQL queries are allowed by JDO only to run SELECT
gueries. This extension permits to bypass this limitation (so for example
can execute stored procedures). { false , true}

JPQL queries, by the JPA spec, do not allow specification of the range in
the query string. This extension to allow "RANGE x,y" after the ORDER BY
clause of JPQL string queries. { false , true}

Whether to check for unused input parameters and throw an exception if
found. The JDO spec requires this check and is a good guide to having
misnamed a parameter name in the query for example. { true , false}

false ,

Parameter

datanucleus.sql.syntax
Checks

Description + Values

Whether to perform some basic syntax checking on SQL/"native" queries
that they include PK, version and discriminator columns where
necessary. { true , false}

DataNucleus Datastore-Specific Properties

‘-:g:Extensi on
=

DataNucleus provides the following properties for configuring datastore-specific used by the
PersistenceManagerFactory.

Parameter

datanucleus.rdbms.dat
astoreAdapterClassNa
me

datanucleus.rdbms.use
LegacyNativeValueStra

tegy

datanucleus.rdbms.stat
ementBatchLimit

datanucleus.rdbms.che
ckExistTablesOrViews

datanucleus.rdbms.use
DefaultSqlType

datanucleus.rdbms.initi
alizeColumnlinfo

datanucleus.rdbms.clas
sAdditionMaxRetries

datanucleus.rdbms.con
straintCreateMode

Description + Values

This property allows you to supply the class name of the adapter to use
for your datastore. The default is not to specify this property and
DataNucleus will autodetect the datastore type and use its own internal
datastore adapter classes. This allows you to override the default
behaviour where there maybe is some issue with the default adapter
class.

This property changes the process for deciding the value strategy to use
when the user has selected "native" to be like it was with DN version 3.0
and earlier, so using "increment” and "uuid-hex". {true, false }

Maximum number of statements that can be batched. The default is 50
and also applies to delete of objects. Please refer to the Statement
Batching guide {integer value (0 = no batching)}

Whether to check if the table/view exists. If false, it disables the automatic
generation of tables that donOt exist. { true , false}

This property applies for schema generation in terms of setting the
default column "sql-type" (when you havenOt defined it) and where the
JDBC driver has multiple possible "sql-type" for a "jdbc-type". If the
property is set to false, it will take the first provided "sql-type" from the
JDBC driver. If the property is set to true, it will take the "sql-type" that
matches what the DataNucleus "plugin.xml" implies. { true , false}

Allows control over what column information is initialised when a table
is loaded for the first time. By default info for all columns will be loaded.
Unfortunately some RDBMS are particularly poor at returning this
information so we allow reduced forms to just load the primary key
column info, or not to load any. { ALL , PK, NONE}

The maximum number of retries when trying to find a class to persist or
when validating a class. { 3, A positive integer}

How to determine the RDBMS constraints to be created.
automatically add foreign-keys/indices to handle all relationships, and

will utilise the specified MetaData foreign-key information. JDO2 will
only use the information in the MetaData file(s). {

DataNucleus , JDO2}

DataNucleus will

27

../datastores/datastores.html#statement_batching
../datastores/datastores.html#statement_batching

Parameter

datanucleus.rdbms.uni
gueConstraints.maplnv
erse

datanucleus.rdbms.disc
riminatorPerSubclassT
able

datanucleus.rdbms.stri
ngDefaultLength

datanucleus.rdbms.stri
ngLengthExceededActi
on

datanucleus.rdbms.use
ColumnDefaultWhenN
ull

datanucleus.rdbms.per
sistEmptyStringAsNull

datanucleus.rdbms.que
ry.fetchDirection

datanucleus.rdbms.que
ry.resultSetType

datanucleus.rdbms.que
ry.resultSetConcurrenc

y

datanucleus.rdbms.que
ry.multivaluedFetch

datanucleus.rdbms.ora
cle.nlsSortOrder

datanucleus.rdbms.mys
gl.engineType

datanucleus.rdbms.mys
gl.collation

28

Description + Values

Whether to add unique constraints to the element table for a map inverse
field. { true , false}

Property that controls if only the base class where the discriminator is
defined will have a discriminator column { false , true}

The default (max) length to use for all strings that donOt have their
column length defined in MetaData. { 255, A valid length}

Defines what happens when persisting a String field and its length
exceeds the length of the underlying datastore column. The default is to
throw an Exception. The other option is to truncate the String to the
length of the datastore column. { EXCEPTION, TRUNCATE}

If an object is being persisted and a field (column) is null, the default
behaviour is to look whether the column has a "default" value defined in
the datastore and pass that in. You can turn this off and instead pass in
NULL for the column by setting this property to false. {true , false}

When persisting an empty string, should it be persisted as null in the
datastore? This is to allow for datastores such as Oracle that dont
differentiate between null and empty string. If it is set to false and the
datastore doesnt differentiate then a special character will be saved when
storing an empty string (and interpreted when reading in). {true, false }

The direction in which the query results will be navigated. { forward

reverse, unknown}

Type of ResultSet to create. Note 1) Not all JDBC drivers accept all options.
The values correspond directly to the ResultSet options. Note 2) Not all
java.util.List operations are available for scrolling result sets. An
Exception is raised when unsupported operations are invoked. {
only , scroll-sensitive, scroll-insensitive}

forward-

Whether the ResultSet is readonly or can be updated. Not all JDBC drivers
support all options. The values correspond directly to the ResultSet
options. { read-only , updateable}

How any multi-valued field should be fetched in a query. ‘exists' means

use an EXISTS statement hence retrieving all elements for the queried
objects in one SQL with EXISTS to select the affected owner objects. 'none’
means donOt fetch container elements. { exists , none}

Sort order for Oracle String fields in queries (BINARY disables native
language sorting). { LATIN , See Oracle documentation}

Specify the default engine for any tables created in MySQL/MariaDB
{InnoDB , valid engine for MySQL}
Specify the default collation for any tables created in MySQL/MariaDB

{valid collation for MySQL}

Parameter

datanucleus.rdbms.mys
gl.characterSet

datanucleus.rdbms.info
rmix.useSerialForldenti

ty

datanucleus.rdbms.sch
emaTable.tableName

datanucleus.rdbms.dyn
amicSchemaUpdates

datanucleus.rdbms.omi
tDatabaseMetaDataGet
Columns

datanucleus.rdbms.refr
eshAllTablesOnRefresh
Columns

datanucleus.rdbms.sqIT
ableNamingStrategy

datanucleus.rdbms.tabl
eColumnOrder

datanucleus.rdbms.allo
wColumnReuse

datanucleus.rdbms.stat
ementLogging

datanucleus.rdbms.fetc
hUnloadedAutomaticall

y

datanucleus.cloud.stora
ge.bucket

Description + Values

Specify the default charset for any tables created in
{valid charset for MySQL}

MySQL/MariaDB

Whether we are using SERIAL for identity columns with Informix

(instead of SERIALB). {true, false }

Name of the table to use when using auto-start mechanism of
"SchemaTable" Please refer to the Auto-Start guide {NUCLEUS_TABLES,
Valid table name}

Whether to allow dynamic updates to the schema. This means that upon
each insert/update the types of objects will be tested and any previously
unknown implementations of interfaces will be added to the existing
schema. {true, false }

Whether to bypass all calls to DatabaseMetaData.getColumns(). This JDBC
method is called to get schema information, but on some JDBC drivers (e.g
Derby) it can take an inordinate amount of time. Setting this to true

means that your datastore schema has to be correct and no checks will be
performed. {true, false}

Whether to refresh all known tables whenever we need to get schema

info for a table from the JDBC driver. Set thisto true if you want to

refresh all known tableOs information in the same call. If your application

is changing the schema often then this should likely be false. {true, false }

Name of the plugin to use for defining the names of the aliases of tables
in SQL statements. { alpha-scheme , t-scheme}

How we should order the columns in a table. The default is to put the
fields of the owning class first, followed by superclasses, then subclasses.
An alternative is to start from the base superclass first, working down to
the owner, then the subclasses { owner-first , superclass-first}

This property allows you to reuse columns for more than 1 field of a
class. It is false by default to protect the user from erroneously typing in a
column name. Additionally, if a column is reused, the user ought to think
about how to determine which field is written to that column E all reuse
ought to imply the same value in those fields so it doesnOt matter which
field is written there, or retrieved from there. {true, false }

How to log SQL statements. The default is to log the statement and
replace any parameters with the value provided in angle brackets.
Alternatively you can log the statement with any parameters replaced by
just the values (no brackets). The final option is to log the raw JDBC
statement (with ? for parameters). { values-in-brackets , values, jdbc}

If enabled will, upon a request to load a field, check for any unloaded
fields that are non-relation fields or 1-1/N-1 fields and will load them in
the same SQL call. {true, false}

This is a mandatory property that allows you to supply the bucket name
to store your data. Applicable for Google Storage, and AmazonS3 only.

29

persistence.html#autostart

Parameter

datanucleus.hbase.relat
ionUsesPersistableld

datanucleus.hbase.enfo
rceUniquenessinApplic
ation

datanucleus.cassandra.
enforceUniguenessinA
pplication

datanucleus.cassandra.
compression

datanucleus.cassandra.
metrics

datanucleus.cassandra.
ss|

datanucleus.cassandra.
socket.read TimeoutMill
is

datanucleus.cassandra.
socket.connectTimeout
Millis

Description + Values

This defines how relations will be persisted. The legacy method would be
just to store the "id" of the object. The default method is to use
"persistableld” which is a form of the id but catering for datastore id and
application id, and including the class of the target object to avoid
subsequent lookups. { true , false}

Setting this property to true means that when a new object is persisted
(and its identity is assigned), no check will be made as to whether it exists
in the datastore and that the user takes responsibility for such checks.
{true, false}

Setting this property to true means that when a new object is persisted

(and its identity is assigned), no check will be made as to whether it exists

in the datastore (since Cassandra does an UPSERT) and that the user takes
responsibility for such checks. {true, false }

Type of compression to use for the Cassandra cluster. { none , snappy}

Whether metrics are enabled for the Cassandra cluster. { true , false}
Whether SSL is enabled for the Cassandra cluster. {true,

false }

Socket read timeout for the Cassandra cluster.

Socket connect timeout for the Cassandra cluster.

Closing PersistenceManagerFactory

Since the PMF has significant resources associated with it, it should always be closed when you no
longer need to perform any more persistence operations. For most operations this will be when
closing your application. Whenever it is you do it like this

pmtf close ();

Level 2 Cache

The PersistenceManagerFactory has an optional cache of all objects across all
_PersistenceManager_s. This cache is called the Level 2 (L2) cache , and JDO doesnOt define whether
this should be enabled or not. With DataNucleus it defaults to enabled. The user can configure the

L2 cache if they so wish; by use of the persistence property datanucleus.cache.level2.type . You set
this to "type" of cache required. You currently have the following options.

30

¥ soft - use the internal (soft reference based) L2 cache. This is the default L2 cache in
DataNucleus. Provides support for the JDO interface of being able to put objects into the cache,
and evict them when required. This option does not support distributed caching, solely running
within the JVM of the client application. Soft references are held to non pinned objects.

¥ weak - use the internal (weak reference based) L2 cache. Provides support for the JDO interface
of being able to put objects into the cache, and evict them when required. This option does not
support distributed caching, solely running within the JVM of the client application. Weak
references are held to non pinned objects.

¥ javax.cache - a simple wrapper to the Java standard "javax.cache" Temporary Caching API.
¥ EHCache - a simple wrapper to EHCacheOs caching product.

¥ EHCacheClassBased- similar to the EHCache option but class-based.

¥ Redis - an L2 cache using Redis.

¥ Oracle Coherence - a simple wrapper to OracleOs Coherence caching product. OracleOs caches
support distributed caching, so you could, in principle, use DataNucleus in a distributed
environment with this option.

¥ spymemcached - a simple wrapper to the "spymemcached" client for memcached caching
product.

¥ xmemcached - a simple wrapper to the "xmemcached" client for memcached caching product.
¥ cacheonix - a simple wrapper to the Cacheonix distributed caching software.
¥ OSCache- a simple wrapper to OSCacheOs caching product.

¥ none - turn OFF L2 caching.

The weak, soft and javax.cache caches are available in the datanucleus-core plugin. The EHCache,
OSCache, Coherence, Cacheonix, and Memcache caches are available in the datanucleus-cache

plugin.

In addition you can control the ~ mode of operation of the L2 cache. You do this using the persistence
property datanucleus.cache.level2.mode . The default is UNSPECIFIED which means that
DataNucleus will cache all objects of entities unless the entity is explicitly marked as not cacheable.

The other options are NONE (donOt cache ever), ALL (cache all entities regardless of annotations),
ENABLE_SELECTIVE(cache entities explicitly marked as cacheable), or DISABLE_SELECTIVE(cache
entities unless explicitly marked as not cacheable - i.e same as our default).

Objects are placed in the L2 cache when you commit() the transaction of a PersistenceManager.
This means that you only have datastore-persisted objects in that cache. Also, if an object is deleted
during a transaction then at commit it will be removed from the L2 cache if it is present.

= Extension
The L2 cache is a DataNucleus =Point allowing you to provide your

own cache where you require it. Use the examples of the EHCache, Coherence
caches etc as reference.

31

#cache_level2_javax_cache
#cache_level2_ehcache
#cache_level2_ehcache
#cache_level2_redis
#cache_level2_coherence
#cache_level2_memcached
http://www.memcached.org
#cache_level2_memcached
http://www.memcached.org
#cache_level2_cacheonix
#cache_level2_oscache
http://github.com/datanucleus/datanucleus-cache
../extensions/extensions.html#cache_level2

Controlling the Level 2 Cache

The majority of times when using a JDO-enabled system you will not have to take control over any
aspect of the caching other than specification of whether to use a L2 Cache or not. With JDO and
DataNucleus you have the ability to control which objects remain in the cache. This is available via

a method on the PersistenceManagerFactory .

PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory (props);
DataStoreCache cache = pmf getDataStoreCach€);

The DataStoreCache interface provides methods to control the retention of objects in the
cache. You have 3 groups of methods

¥ evict - used to remove objects from the L2 Cache

¥ pin - used to pin objects into the cache, meaning that they will not get removed by garbage
collection, and will remain in the L2 cache until removed.

¥ unpin - used to reverse the effects of pinning an object in the L2 cache. This will mean that the
object can thereafter be garbage collected if not being used.

These methods can be called to pin objects into the cache that will be much used. Clearly this will be
very much application dependent, but it provides a mechanism for users to exploit the caching
features of JDO. If an object is not "pinned" into the L2 cache then it can typically be garbage
collected at any time, so you should utilise the pinning capability for objects that you wish to retain
access to during your application lifetime. For example, if you have an object that you want to be
found from the cache you can do

PersistenceManagerFactory pmf = JDOHelpergetPersistenceManagerFactory (props);
DataStoreCache cache = pmf getDataStoreCach€);

cache pinAll (MyClassclass, false); // Pin all objects of type MyClass from now on
PersistenceManager pm= pmf getPersistenceManager();

Transaction tx = pmcurrentTransaction ();

try

{

E tx.begin();

E pmmakePersistent(myObjec);
E // "myObiject” will now be pinned since we are pinning all objects of type MyClass.
E tx.commi();

}

finally

{A

E if (tx.isActive ()

E {

E tx . close ();

E }

}

32

http://www.datanucleus.org/javadocs/javax.jdo/3.2/javax/jdo/datastore/DataStoreCache.html

Thereafter, whenever something refers to myObject, it will find it in the L2 cache. To turn this
behaviour off, the user can either unpin it or evict it.

JDO allows control over which classes are put into a L2 cache. You do this by specifying the
cacheable attribute to false (defaults to true). So with the following specification, no objects of type
MyClass will be put in the L2 cache.

@Cacheablefalse”)
public class MyClass

{
E
}

or using XML metadata

<class nameMyClass" cacheable="false" >

E
</class>

JDO allows you control over which fields of an object are put in the L2 cache. You do this by
specifying the cacheable attribute to false (defaults to true). This setting is only required for fields
that are relationships to other persistable objects. Like this

public class MyClass

{

E

E Collection values;
E @Cacheablgfalse")
E Collection elements;
}

or using XML metadata

<class nameiMyClass">
E <field name%values" />
E <field nameelements" cacheable='false" />

E
</class>

So in this example we will cache "values" but not "elements". If a field is cacheable then

¥ If it is a persistable object, the "identity" of the related object will be stored in the L2 cache for
this field of this object

33

¥ If it is a Collection of persistable elements, the "identity" of the elements will be stored in the L2
cache for this field of this object

¥ If it is a Map of persistable keys/values, the "identity" of the keys/values will be stored in the L2
cache for this field of this object

When pulling an object in from the L2 cache and it has a reference to another object DataNucleus
uses the "identity" to find that object in the L1 or L2 caches to re-relate the objects.

L2 Cache using javax.cache

DataNucleus provides a simple wrapper to any compliant javax.cache implementation , for example
Apache Ignite or HazelCast. To enable this you should put a "javax.cache" implementation in your
CLASSPATH, and set the persistence properties

datanucleus.cache.level2.type=javax.cache
datanucleus.cache.level2.cacheName={cache name}

As an example, you could simply add the following to a Maven POM, together with those
persistence properties above to use HazelCast “javax.cache" implementation

<dependency>

E <groupld>javax.cache </groupld>

E <artifactld> cache-api</artifactld>
E <version>1.0.0 </version>
</dependency>

<dependency>

E <groupld>com.hazelcast</groupld>
E <artifactld> hazelcast </artifactld>
E <version>3.7.3 </version>
</dependency>

L2 Cache using EHCache

DataNucleus provides a simple wrapper to EHCacheOs own API| caches(not the javax.cache API
variant). To enable this you should set the persistence properties

datanucleus.cache.level2.type=ehcache
datanucleus.cache.level2.cacheName={cache name}
datanucleus.cache.level2.configurationFile={EHCache configuration file (in classpath)}

The EHCache plugin also provides an alternative L2 Cache that is class-based. To use this you would
need to replace "ehcache" above with "ehcacheclassbased".

L2 Cache using Spymemcached/Xmemcached

DataNucleus provides a simple wrapper to Spymemcached caches and Xmemcached caches. To

34

http://jcp.org/en/jsr/detail?id=107
https://apacheignite.readme.io/
https://hazelcast.org/
http://www.sf.net/projects/ehcache
http://code.google.com/p/spymemcached/
http://code.google.com/p/xmemcached/

enable this you should set the persistence properties

datanucleus.cache.level2.type=spymemcached [or "xmemcached"]
datanucleus.cache.level2.cacheName={prefix for keys, to avoid clashes with other
memcached objects}

datanucleus.cache.level2.expireMillis=...
datanucleus.cache.level2.memcached.servers=...

datanucleus.cache.level2.memcached.servers is a space separated list of memcached hosts/ports,
e.g. host:port host2:port. datanucleus.cache.level2.expireMillis if not set or set to 0 then no expire

L2 Cache using Cacheonix

DataNucleus provides a simple wrapper to ~ Cacheonix . To enable this you should set the persistence
properties

datanucleus.cache.level2.type=cacheonix
datanucleus.cache.level2.cacheName={cache name}

Note that you can optionally also specify

datanucleus.cache.level2.expiryMillis={expiry-in-millis}
datanucleus.cache.level2.configurationFile={Cacheonix configuration file (in
classpath)}

and define a cacheonix-config.xml like

35

http://www.memcached.org
http://www.cacheonix.com/

<?xml version="1.0"?>
<cacheonix>

E <local>

E <l-- One cache per class being stored. -->

E <localCache namemydomain.MyClass*

E <store>

E <lru maxElements*1000" maxBytes=lmb'/>
E <expiration timeToLive="60s"/>

E </store>

E </localCache>

E <!-- Fallback cache for classes indeterminable from their id. -->
E <localCache namedatanucleus" >

E <store>

E <lru maxElements*1000" maxBytes210mb'>
E <expiration timeToLive="60s"/>

E </store>

E </localCache>

E <localCache nametdefault" template="true" >

E <store>

E <lru maxElements*10" maxBytes10mb7>
E <overflowToDisk maxOverflowBytes=1mb'/>
E <expiration timeTolLive="1s"/>

E </store>

E </localCache>

E </local>

</cacheonix>

L2 Cache using Redis

DataNucleus provides a simple L2 cache using Redis. To enable this you should set the persistence
properties

datanucleus.cache.level2.type=redis

datanucleus.cache.level2.cacheName={cache name}
datanucleus.cache.level2.clearAtClose={true | false, whether to clear at close}
datanucleus.cache.level2.expiryMillis={expiry-in-millis}
datanucleus.cache.level2.redis.database={database, or use the default '1'}
datanucleus.cache.level2.redis.timeout={optional timeout, or use the default of 5000}
datanucleus.cache.level2.redis.sentinels={comma-separated list of sentinels, optional
(use server/port instead)}

datanucleus.cache.level2.redis.server={server, or use the default of "localhost'"}
datanucleus.cache.level2.redis.port={port, or use the default of 6379}

36

L2 Cache using OSCache

DataNucleus provides a simple wrapper to OSCacheOs cachesTo enable this you should set the
persistence properties

datanucleus.cache.level2.type=oscache
datanucleus.cache.level2.cacheName={cache name}

L2 Cache using Oracle Coherence

DataNucleus provides a simple wrapper to OracleOs Coherence caches This currently takes the
NamedCache interface in Coherence and instantiates a cache of a user provided name. To enabled
this you should set the following persistence properties

datanucleus.cache.level2.type=coherence
datanucleus.cache.level2.cacheName={coherence cache name}

The Coherence cache name is the name that you would normally put into a call to
CacheFactory.getCache(name). You have the benefits of CoherenceOs distributed/serialized caching.
If you require more control over the Coherence cache whilst using it with DataNucleus, you can just
access the cache directly via

JDODataStoreCacheache = (JDODataStoreCach@mf getDataStoreCache);
NamedCachangosolCache = ((TangosolLevel2Cachgcache getLevel2Cache
(). getTangosolCaché);

Level 2 Cache implementation

Objects in a Level 2 cache are keyed by their JDO "identity". Consequently only persistable objects

with an identity will be L2 cached. In terms of what is cached, the persistable object is represented

by a CachedPC object. This stores the class of the persistable object, the "id", "version" (if present),

and the field values (together with which fields are present in the L2 cache). If a field is/contains a
relation, the field value will be the "id" of the related object (rather than the object itself). If a field
is/contains an embedded persistable object, the field value will be a nested CachedPCobject
representing that object.

37

http://www.opensymphony.com/oscache/
http://www.oracle.com/technology/products/coherence/index.html
https://github.com/datanucleus/datanucleus-core/blob/master/src/main/java/org/datanucleus/cache/CachedPC.java

Datastore Schema

Some datastores have a well-defined structure and when persisting/retrieving from these
datastores you have to have this schema in place. DataNucleus provides various controls for
creation of any necessary schema components. This creation can be performed as follows

¥ At runtime, as a one-off generate-schema step .
¥ One off task before running your application using SchemaTool

¥ At runtime, auto-generating tables as it requires them

The thing to remember when using DataNucleus is that the schema is under your control
DataNucleus does not impose anything on you as such, and you have the power to turn on/off all
schema components. Some Java persistence tools add various types of information to the tables for
persisted classes, such as special columns, or meta information. DataNucleus is very unobtrusive as
far as the datastore schema is concerned. It minimises the addition of any implementation artifacts
to the datastore, and adds nothing (other than any datastore identities, and version columns where
requested) to any schema tables.

Schema Generation for persistence-unit

DataNucleus JDO allows you to generate the schema for your persistence-unit when creating a PMF.
You can create, drop or drop then create the schema either directly in the datastore, or in scripts
(DDL) as required. See the associated persistence properties (most of these only apply to RDBMS).

¥ datanucleus.generateSchema.database.mode which can be set to create, drop, drop-and-
create or none to control the generation of the schema in the database.

¥ datanucleus.generateSchema.scripts.mode which can be set to create, drop, drop-and-create
or none to control the generation of the schema as scripts (DDL). See also
datanucleus.generateSchema.scripts.create.target and
datanucleus.generateSchema.scripts.drop.target ~ which will be generated using this mode of
operation.

¥ datanucleus.generateSchema.scripts.create.target - this should be set to the name of a DDL

script file that will be generated when using datanucleus.generateSchema.scripts.mode

¥ datanucleus.generateSchema.scripts.drop.target - this should be set to the name of a DDL
script file that will be generated when using datanucleus.generateSchema.scripts.mode

¥ datanucleus.generateSchema.scripts.create.source - set this to an SQL script of your own
that will create some tables (prior to any schema generation from the persistable objects)

¥ datanucleus.generateSchema.scripts.drop.source - set this to an SQL script of your own that
will drop some tables (prior to any schema generation from the persistable objects)

¥ datanucleus.generateSchema.scripts.load - set this to an SQL script of your own that will
insert any data that you require to be available when your PMF is initialised

38

#schema-generation
#schematool
#schema-autogeneration

Schema Auto-Generation at runtime

‘-’fg:Extensi on
=

If you want to create the schema (tables + columns + constraints) during the persistence process, the
property datanucleus.schema.autoCreateAll provides a way of telling DataNucleus to do this. ItOs
a shortcut to setting the other 3 properties to true. Thereafter, during calls to DataNucleus to persist
classes or performs queries of persisted data, whenever it encounters a new class to persist that it

has no information about, it will use the MetaData to check the datastore for presence of the "table",

and if it doesnOt exist, will create it. In addition it will validate the correctness of the table
(compared to the MetaData for the class), and any other constraints that it requires (to manage any
relationships). If any constraints are missing it will create them.

¥ If you wanted to only create the "tables" required, and none of the "constraints" the property
datanucleus.schema.autoCreateTables provides this, simply performing the tables part of the
above.

¥If you want to create any missing “columns" that are required, the property
datanucleus.schema.autoCreateColumns provides this, validating and adding any missing
columns.

¥ If you wanted to only create the "constraints" required, and none of the "tables" the property
datanucleus.schema.autoCreateConstraints provides this, simply performing the
"constraints” part of the above.

¥ If you want to keep your schema fixed (i.e donOt allow any modifications at runtime) then make
sure that the properties datanucleus.schema.autoCreate{XXX} are set to false

Schema Generation : Validation

‘-:g:Extensi on
=

DataNucleus can check any existing schema against what is implied by the MetaData.

The property datanucleus.schema.validateTables provides a way of telling DataNucleus to
validate any tables that it needs against their current definition in the datastore. If the user already

has a schema, and want to make sure that their tables match what DataNucleus requires (from the
MetaData definition) they would set this property to true . This can be useful for example where you
are trying to map to an existing schema and want to verify that youOve got the correct MetaData
definition.

The property datanucleus.schema.validateColumns provides a way of telling DataNucleus to
validate any columns of the tables that it needs against their current definition in the datastore. If

the user already has a schema, and want to make sure that their tables match what DataNucleus
requires (from the MetaData definition) they would set this property to true . This will validate the
precise column types and widths etc, including defaultability/nullability settings. Please be aware
that many JDBC drivers contain bugs that return incorrect column detail information and so

having this turned off is sometimes the only option (dependent on the JDBC driver quality).

39

The property datanucleus.schema.validateConstraints provides a way of telling DataNucleus to
validate any constraints (primary keys, foreign keys, indexes) that it needs against their current
definition in the datastore. If the user already has a schema, and want to make sure that their table
constraints match what DataNucleus requires (from the MetaData definition) they would set this
property to true.

Schema Generation : Naming Issues

Some datastores allow access to multiple "schemas" (such as with most RDBMS). DataNucleus will,
by default, use the "default" database schema for the Connection URL and user supplied. This may
cause issues where the user has been set up and in some databases (e.g Oracle) you want to write to
a different schema (which that user has access to). To achieve this in DataNucleus you would set the
persistence properties

datanucleus.mapping.Catalog={the_catalog_name}
datanucleus.mapping.Schema={the_schema_name}

This will mean that all RDBMS DDL and SQL statements will prefix table names with the necessary
catalog and schema names (specify which ones your datastore supports).

Some RDBMS do not support specification of both catalog and schema. For
example MySQL/MariaDB use catalog and not schema. You need to check what is
appropriate for your datastore.

The datastore will define what case of identifiers (table/column names) are accepted. By default,
DataNucleus will capitalise names (assuming that the datastore supports it). You can however
influence the case used for identifiers. This is specifiable with the persistence property
datanucleus.identifier.case , having the following values

¥ UpperCase : identifiers are in upper case

¥ lowercase : identifiers are in lower case

¥ MixedCase : No case changes are made to the name of the identifier provided by the user (class
name or metadata).

Some datastores only support UPPERCASE or lowercase identifiers and so setting
this parameter may have no effect if your database doesnOt support that option.

This case control only applies to DataNucleus-generated identifiers. If you

provide your own identifiers for things like schema/catalog etc then you need to
specify those using the case you wish to use in the datastore (including quoting as
necessary)

Schema Generation : Column Ordering

By default all tables are generated with columns in alphabetical order, starting with root class fields

40

followed by subclass fields (if present in the same table) etc. There is JDO metadata attribute that
allows you to specify the order of columns for schema generation; it is achieved by specifying the
metadata attribute position against the column.

<column position= "1"/>

Note that the values of the position start at 0, and should be specified completely for all columns of
all fields.

Read-Only

If your datastore is read-only (you canOt add/update/delete any data in it), obviously you could just
configure your application to not perform these operations. An alternative is to set the PMF as
"read-only". You do this by setting the persistence property javax.jdo.option.ReadOnly to true.

From now on, whenever you perform a persistence operation that implies a change in datastore
data, the operation will throwa JDOReadOnlyException.

DataNucleus provides an additional control over the behaviour when an attempt is made to change

a read-only datastore. The default behaviour is to throw an exception. You can change this using

the persistence property datanucleus.readOnlyDatastoreAction with values of "EXCEPTION"
(default), and "IGNORE". "IGNORE" has the effect of simply ignoring all attempted updates to
readonly objects.

You can take this read-only control further and specify it just on specific classes. Like this

@ExtensiofvendorNam@'datanucleus" , key="read-only" , value="true")
public class MyClass{...}

SchemaTool

‘-f;::Extensi on
=

DataNucleus SchemaTool currently works with RDBMS, HBase, Excel, OOXML, ODF, MongoDB,
Cassandra datastores and is very simple to operate. It has the following modes of operation :

¥ createDatabase - create the specified database (catalog/schema) if the datastore supports that
operation.

¥ deleteDatabase - delete the specified database (catalog.schema) if the datastore supports that
operation.

¥ create - create all database tables required for the classes defined by the input data.
¥ delete - delete all database tables required for the classes defined by the input data.

¥ deletecreate - delete all database tables required for the classes defined by the input data, then
create the tables.

41

¥ validate - validate all database tables required for the classes defined by the input data.

¥ dbinfo - provide detailed information about the database, itOs limits and datatypes support.
Only for RDBMS currently.

¥ schemainfo - provide detailed information about the database schema. Only for RDBMS

currently.

In addition for RDBMS, the create /delete modes can be used by adding "-ddIFile {flename}" and
this will then not create/delete the schema, but instead output the DDL for the tables/constraints
into the specified file.

For the create , delete and validate modes DataNucleus SchemaTool accepts either of the following
types of input.

¥ A set of MetaData and class files. The MetaData files define the persistence of the classes they
contain. The class files are provided when the classes have annotations

¥ The name of a persistence-unit . The persistence-unit name defines all classes, metadata files,
and jars that make up that unit. Consequently, running DataNucleus SchemaTool with a
persistence unit name will create the schema for all classes that are part of that unit.

$ if using SchemaTool with a persistence-unit make sure you omit
datanucleus.generateSchema properties from your persistence-unit.

Here we provide many different ways to invoke DataNucleus SchemaTool

¥ Invoke it using Maven , with the DataNucleus Maven plugin

¥ Invoke it using Ant , using the provided DataNucleus SchemaTool Ant task
¥ Invoke it manually from the command line

¥ Invoke it using the DataNucleus Eclipse plugin

¥ Invoke it programmatically from within an application

SchemaTool using Maven

If you are using Maven to build your system, you will need the DataNucleus Maven plugin. This
provides 5 goals representing the different modes of DataNucleus SchemaTool . You can use the

goals datanucleus:schema-create , datanucleus:schema-delete , datanucleus:schema-validate
depending on whether you want to create, delete or validate the database tables. To use the
DataNucleus Maven plugin you will may need to set properties for the plugin (in your pom.xm). For
example
Property Default Description
api JDO API for the metadata being used (JDO, JPA).
metadataDirectory ${project.b Directory to use for schema generation files

uild.output (classes/mappings)

Directory}

42

persistence.html#persistenceunit
#schematool_maven
#schematool_ant
#schematool_manual
tools.html#eclipse
#schematool_programmatic

