=DataNucleus

S

s

JDO Query Guide (v5.2)

Table of Contents

QUETY AP . 2. ...,
Creating @ QUEBTYttt it e e e e e e e 2.....
CloSING @ QUETY . . ettt e e 8.....
NamMeEd QUEIY . ..t 8.....
QUETY EXIENSIONS . . o oo S.....
Setting qQUErY ParametersSt H....
CompiliNg @ QUETY . oot 6.
EXECULING @ QUEBIY . o oottt e e e e e e e 6.
Controlling the execution : FetchPlan
ignoreCache(), setlgnoreCache() 9...
Control over locking of fetched objects 9...
Timeout on query execution for reads e Q...
Timeout on query execution for WrteS 0. .
Extension: Loading Large Result Sets at Commit() d0.
Extension: Caching of ResUlts do0. ..
Extension: Size of Large ResuUlt Sets d0..
Extension: Type of Result Set (RDBMS) e dl..
Extension: Result Set Control (RDBMS) dil..

JD OO . . d3.....
JDOQL Single-String SYNTAXttt d3...
Candidate Classo da. ...
1 ds
FIelds/ PropertiesS . . o oo de. . ..
MEthOdSs . . .o AT
(T = 84
ParamM IS . . 85....
VAN ADIES . 86....
I PO S . o o a7
IF ELSE @XPresSIONS . .ottt A88...
O PEIAIOIS . . . oot 88....
INStANCEOf . . . 89....
CASHING .ttt 89....
SUDQUEIES . o 89....
RESUIL ClauSe 42. ...
RESUIL Class oo 43. ...
Grouping Of RESUILS oo da . ..
Ordering of ReSUIISo 45 . ..

Range Of RESUISo é4b. . ..

JDOQL IN-MEMOIY QUEIIES .+ o o vttt et et e e e e e e e e 46. ..

Update/Delete QUEIES . . . a7 . ..
Deletion DY QUEIY . . a7. ...
BUIK Delete . . ar. ...
BUIK Update a7. ...
JDOOL StHCINESS . . ot 48. . ..
JDOQL : SQL Generation for RDBMS e 48 . .
JD O QL TYPEA . . .ttt e e 49. ...
PrEParaliON . . . e 49. ...
QUETY ClaSSS . . v vttt e e e 50. ...
QueEry APl - FiENg .. oo e e al...
QUENY AP - Ordering ... e e H2. ..
Query APl - Methods e h2 ...
QUENY AP - RESUIS .. e b4 ...
QUENY APl - ParameterS . .. b4, ..
Query APl - Variables H5. ..
Query AP - If-Then-ElSe e 65. ..
QUENY APl - SUDQUEIIES .. e 56. ..
Query AP - Candidatesot e e 56. ..
SO L. ot 68.....
Setting candidate Class e 58. ..
UNiQUE TESUIS . .. e e e H9. ...
Defining @ resSUIt tYPE . ..o H9. ..
SQL Syntax CheCKS e e 60 . ..
Inserting/Updating/Deleting 60. . .
Pl IS . . . ol. ...
Example 1 - Using SQL aggregate functions, without candidate class 61
Example 2 - Using SQL aggregate functions, withresultclass 62
Example 3 - Retrieval using candidate class e 62. .
Example 4 - Using parameters, without candidate class 63.
Example 5 - Named QUEIY e 63. ..
Cassandra COL e 65. ...
B 66.
BNty NamM e .. e e ©66. ...
Fetched Fields ©6. . ..
Stored ProCEUIES . . o o o7. . ..
Using DataNucleus Stored Procedure APl e 67. .
Using JDO SQL Query API to invoke stored procedures ... 68.
QUEIY CaChe ..o e 69....
Generic Query Compilation Cache e 69 ..

Datastore Query Compilation Cache 69 . .

Query Results Cache

Once you have persisted objects you need to query them. For example if you
have a web application representing an online store, the user asks to see all
products of a particular type, ordered by the price. This requires you to query
the datastore for these products. JDO specifies support for

¥ JDOQL: a string-based query language using Java syntax.

¥ Typed : following JDOQL syntax but providing an API supporting refactoring
of classes and the queries they are used in.

¥ SQL : typically only for RDBMS
¥ JPQL: not explicitly part of the JDO spec, but provided by DataNucleus JDO.

¥ Stored Procedures : not explicitly part of the JDO spec, but provided by
DataNucleus JDO as an option for RDBMS.

Which query language is used is down to the developer. The data-tier of an
application could be written by a primarily Java developer, who would typically

think in an object-oriented way and so would likely prefer JDOQL. On the other
hand the data-tier could be written by a datastore developer who is more
familiar with SQL concepts and so could easily make more use of SQL. This is
the power of an implementation like DataNucleus in that it provides the
flexibility for different people to develop the data-tier utilising their own skills

to the full without having to learn totally new concepts.

We recommend using JDOQL for queries wherever possible since

| it is object-based and datastore agnostic, giving you extra
flexibility in the future. If not possible using JDOQL, only then use
a language appropriate to the datastore in question

For some datastores additional query languages may be available
specific to that datastore - please check the datastores
documentation .

There are 2 categories of queries with JDO :-

¥ Programmatic Query where the query is defined using the JDO Query API.

¥ Named Query where the query is defined in MetaData and referred to by its
name at runtime.

#jdoql
#jdoql_typed
#sql
#jpql
#stored_procedures
../datastores/datastores.html
../datastores/datastores.html
query.html#api
query.html#named

Query API

LetOs now try to understand the Query APl in JDO. We firstly need to look at a typical Query.

LetOs create a JDOQL string-based query to highlight its usage

Query q = pmnewQuerf/'SELECT FROM mydomain.Product p WHERE p.price <= :threshold
ORDER BY p.price ASQ;
List results = g.execute(my_threshold);

In this Query, we implicitly select JDOQL by just passing in a query string to the method
PersistenceManager.newQuery(String) , and the query is specified to return all objects of type
Product (or subclasses) which have the price less than or equal to some threshold value and
ordering the results by the price. WeOve specified the query like this because we want to pass the
threshold value in as a parameter (so maybe running it once with one value, and once with a
different value). We then set the parameter value of our threshold parameter. The Query is then
executed to return a List of results. The example is to highlight the typical methods specified for a
(JDOQL) string-based Query.
Creating a query
The principal ways of creating a query are

¥ Specifying the query language, and using a single-string form of the query

Query q = pm.newQuery("javax.jdo.query.JDOQL",

E "SELECT FROM mydomain.MyClass WHERE field2 < threshold PARAMETERS java.util.Date
threshold");

or alternatively
Query g = pmnewQuer'SQL" "SELECF FROMAYTABLBE/HEREOL1== 25);
¥ A "named" query , (pre-)defined in metadata (refer to metadata docs).
Query<MyClass> q = pm.newNamedQuery(MyClass.class, "MyQuery1");
¥ JDOQL : Use thesingle-string form of the query

Query q = pm.newQuery("SELECT FROM mydomain.MyClass WHERE field2 < threshold
PARAMETERS java.util.Date threshold");

¥ JDOQL : Use thedeclarative API to define the query

http://www.datanucleus.org/javadocs/javax.jdo/3.2/javax/jdo/Query.html
query.html#named
query.html#jdoql
query.html#jdoql

Query<MyClass> q = pm.newQuery(MyClass.class);
g.setFilter("field2 < threshold");
g.declareParameters(“java.util. Date threshold");

¥ JDOQL : Use the Typed Query API to define the query

JDOQLTypedQuery<MyClass> q = pm.newJDOQLTypedQuery(MyClass.class);
QMyClass cand = QMyClass.candidate();

List<Product> results =
g.filter(cand.field2.lt(g.doubleParameter("threshold"))).executeList();

Closing a query

When a query is executed it will have access to the results of that query. Each time it is executed
(maybe with different parameters) it will have separate results. This can consume significant
resources if the query returned a lot of records.

You close a query (and all query results) like this
g. close ();
If you just wanted to close a specific query result you would call

g. close (queryResult);

where the queryResult is what you were returned from executing the query.

Named Query

With the JDO query APl you can either define a query at runtime, or define it in the
MetaData/annotations for a class and refer to it at runtime using a symbolic name. This second
option means that the method of invoking the query at runtime is much simplified. To demonstrate

the process, lets say we have a class called Product (something to sell in a store). We define the JDO
Meta-Data for the class in the normal way, but we also have some query that we know we will
require, so we define the following in the Meta-Data.

query.html#jdoql_typed

<package nametmydomain>

E <class name*Product" >

E :

E <query name=SoldOut" language='javax.jdo.query.JDOQL" ><![CDATA[
E SELECT FROM mydomain.Product WHERE status == "Sold Out"

E > </query>

E <class>

</package>

So we have a JDOQL query called "SoldOut" defined for the class Product that returns all Products
(and subclasses) that have a status of "Sold Out". Out of interest, what we would then do in our
application to execute this query woule be

QuenkProduct> q = pmnewNamedQuémydomainProduct. class, "SoldOut");
List <Product> results = g. executeList ();

The above example was for the JDOQL object-based query language. We can do a similar thing

using SQL, so we define the following in our MetaData for our Product class
<jdo>
E <package namemydomain®
E <class name®Product” >
E
E <query name=PriceBelowValue" language="javax.jdo.query.SQL" ><![CDATA[
E SELECT NAME FROM PRODUCT WHERE PRICE < ?
E > </query>
E </class>
E </package>

</jdo>

So here we have an SQL query that will return the names of all Products that have a price less than
a specified value. This leaves us the flexibility to specify the value at runtime. So here we run our
named query, asking for the names of all Products with price below 20 euros.

QuenxProduct> g = pmnewNamedQuémydomainProduct. class, "PriceBelowValue");
g. setParameters(20.0);
List <Product> results = @. executeList ();

All of the examples above have been specifed within the <class> element of the MetaData. You can,
however, specify queries below <jdo> in which case the query is not scoped by a particular
candidate class. In this case you must put your queries in any of the following MetaData files

IMETA-INF/package.jdo
/WEB-INF/package.jdo
/package.jdo
IMETA-INF/package-{mapping}.orm
/WEB-INF/package-{mapping}.orm
/package-{mapping}.orm
IMETA-INF/package.jdoquery
IWEB-INF/package.jdoquery
/package.jdoquery

Saving a Query as a Named Query

DataNucleus JDO also allows you to create a query, and then save it as a "named" query for later
reuse. You do this as follows

Query q = pmnewQuerf/'SELECT FROM Product p WHERE .);"
g. saveAsNamedQuéipyQuery;

and you can thereafter access the query via

Query q = pmnewNamedQuéRroduct. class, "MyQuery);

Query Extensions

The JDO query API allows implementations to support "extensions" and provides a simple interface
for enabling the use of such extensions on queries. An extension specifies additional information to
the query mechanism about how to perform the query. Individual extensions will be explained
later in this guide.

You set an extension like this

g. extension ("extension_name", value);

Mapexts = new HashM&p;

exts. put(“"extensionl" , valuel);
exts. put("extension2" , value2);
g. extensions (exts);

With DataNucleus, all extension names will begin with "datanucleus.".

The Query API also has methods setExtensions and addExtension that are from the original version
of the API, but function the same as these methods quoted.

Setting query parameters

Queries can be made flexible and reusable by defining parameters as part of the query, so that we
can execute the same query with different sets of parameters and minimise resources.

/[JIDOQL Using named parameters

QueryProduct> q = pmnewQuerfProduct. class);

g. setFilter ("this.name == :name && this.serialNo == :serial");
Mapparams = new HashM&;

params put("name’, "Walkman);

params put("serial* , "123021");
g. setNamedParamete(gparams;

/[IDOQL Using numbered parameters
QuernyProduct> q = pmnewQuerfProduct. class);
g. setFilter ("this.name == ?1 && this.serialNo == ?2");

g. setParameters("Walkman; "123021");

Alternatively you can specify the query parameters in the execute method call.

Compiling a query

An intermediate step once you have your query defined, if you want to check its validity, is to
compile it. You do this as follows

g. compile();
If the query is invalid, then a JDOException will be thrown.

Executing a query

So we have set up our query. We now execute it. We have various methods to do this, depending on
what result we are expecting etc

/I Simple execute
Object result = qg. execute();

/I Execute with 1 parameter passed in
Object result = g. execute(paramVall;

/I Execute with multiple parameters passed in
Object result = qg.execute(paramVall paramVal3;

/I Execute with an array of parameters passed in (positions match the query parameter
position)
Object result = qg. executeWithArray (new Object[]{ paramVall paramVal2);

/I Execute with a map of parameters keyed by their name in the query
Object result = g. executeWithMagpparamMap

/I Execute knowing we want to receive a list of results
List results = . executeList ();

/I Execute knowing there is 1 result row
Object result = g. executeUniqug);

/I Execute where we want a list of results and want each result row of a particular

type
List <ResultClass> results = g. executeResultList (ResultClass. class);

/I Execute where we want a single result and want the result row of a particular type
ResultClass result = g. executeResultUnique(ResultClass. class);

Extension : Flush before query execution
.{g&tensinn

When using optimistic transactions all updates to persistent objects are held until flush()/commit().

This means that executing a query may not take into account changes made during that transaction

in some objects. DataNucleus allows an extension for calling flush() just before execution of queries

so that all updates are taken into account. You could specify this as a persistence property
datanucleus.query.flushBeforeExecution (defaults to false) and it will apply to all queries.
Alternatively, to do this on a per query basis you would do

query. extension ("datanucleus.query.flushBeforeExecution" , "true");

Controlling the execution : FetchPlan

When a Query is executed it executes in the datastore, which returns a set of results. DataNucleus
could clearly read all results from this ResultSet in one go and return them all to the user, or could

allow control over this fetching process. JDO provides a fetch size on the Fetch Plan to allow this
control. You would set this as follows

Query q = pmnewQuerg..);
g. getFetchPlan(). setFetchSize (FetchPlan. FETCH_SIZE OPTINAL

fetch size has 3 possible values.

¥ FETCH_SIZE_OPTIMAL - allows DataNucleus full control over the fetching. In this case
DataNucleus will fetch each object when they are requested, and then when the owning
transaction is committed will retrieve all remaining rows (so that the Query is still usable after
the close of the transaction).

¥ FETCH_SIZE_GREEDY - DataNucleus will read all objects in at query execution. This can be
efficient for queries with few results, and very inefficient for queries returning large result sets.

¥ A positive value - DataNucleus will read this number of objects at query execution. Thereafter
it will read the objects when requested.

In addition to the number of objects fetched, you can also control which fields are fetched for each
object of the candidate type. This is controlled via the FetchPlan.

For RDBMS any single-valued member will be fetched in the original SQL query, but with multiple-

valued members this is not supported. However what will happen is that any collection/array field

will be retrieved in a single SQL query for all candidate objects (by default using an EXISTS
subquery); this avoids the "N+1" problem, resulting in 1 original SQL query plus 1 SQL query per
collection member. Note that you can disable this by either not putting multi-valued fields in the
FetchPlan, or by setting the query extension datanucleus.rdbms.query.multivaluedFetch to none
(default is "exists" using the single SQL per field).

For non-RDBMS datastores the collection/map is stored by way of a Collection of ids of the related
objects in a single "column" of the object and so is retrievable in the same query. See also Fetch
Groups.

Extension: Load results at commit

= Extension

==

DataNucleus also allows an extension to give further control. As mentioned above, when the
transaction containing the Query is committed, all remaining results are read so that they can then
be accessed later (meaning that the query is still usable). Where you have a large result set and you
don®t want this behaviour you can turn it off by specifying a Query extension

g. extension ("datanucleus.query.loadResultsAtCommit* , “false");

so when the transaction is committed, no more results will be available from the query.

persistence.html#fetch_groups
persistence.html#fetch_groups
persistence.html#fetch_groups

Extension: Ignore FetchPlan
‘-:;;_:Extensi on

In some situations you donOt want all FetchPlan fields retrieving, and DataNucleus provides an
extension to turn this off, like this

g. extension ("datanucleus.query.useFetchPlan" , "false");

ignoreCache(), setlgnoreCache()

The ignoreCache option setting specifies whether the query should execute entirely in the back end,
instead of in the cache. If this flag is set to true, DataNucleus may be able to optimize the query
execution by ignoring changed values in the cache. For optimistic transactions, this can
dramatically improve query response times.

g. ignoreCache(true);

Control over locking of fetched objects

JDO allows control over whether objects found by a query are locked during that transaction so that
other transactions canOt update them in the meantime. To do this you would do

Query q = pmnewQuerf..);
g. serializeRead (true);

You can also specify this for all queries for all PMs using the persistence property
datanucleus.SerializeRead . In addition you can perform this on a per-transaction basis by doing

tx . setSerializeRead (true);

" If the datastore in use doesnOt support locking of objects then this will do nothing

Timeout on gquery execution for reads
g. datastoreReadTimeoutMillis (1000;

Sets the timeout for this query (in milliseconds). Will throw a JDOUnsupportedOperationException if
the query implementation doesnOt support timeouts (for the current datastore).

Timeout on query execution for writes
g. datastoreWriteTimeoutMillis (1000);

Sets the timeout for this query (in milliseconds) when it is a delete/update. Will throw a
JDOUnsupportedOperationException if the query implementation doesnOt support timeouts (for the
current datastore).

Extension: Loading Large Result Sets at Commit()

‘-’Q::Extensi on
=

When a transaction is committed by default all remaining results for a query are loaded so that the
query is usable thereafter. With a large result set you clearly donOt want this to happen. So in this
case you should set the extension datanucleus.query.loadResultsAtCommit to false.

To do this on a per query basis you would do

guery. addExtension("datanucleus.query.loadResultsAtCommit" , "false");

Extension: Caching of Results

‘-’fg:Extensi on
B

When you execute a query, the query results are typically loaded when the user accesses each row.

Results that have been read can then be cached locally. You can control this caching to optimise it

for your memory requirements. You can set the query extension
datanucleus.query.resultCacheType and it has the following possible values

¥ weak : use a weak reference map for caching (default)
¥ soft : use a soft reference map for caching
¥ hard : use a Map for caching (objects not garbage collected)

¥ none : no caching (hence uses least memory)

To do this on a per query basis, you would do

query. addExtension("datanucleus.query.resultCacheType" , "weak");

Extension: Size of Large Result Sets

10

‘-ﬁ;Extensi on
=

If you have a large result set you clearly donOt want to instantiate all objects since this would hit the
memory footprint of your application. To get the number of results many JDBC drivers, for
example, will load all rows of the result set. This is to be avoided so DataNucleus provides control

over the mechanism for getting the size of results. The persistence property
datanucleus.query.resultSizeMethod has a default of last (which means navigate to the last
object, hence hitting the JDBC driver problem). On RDBMS, if you set this to count then it will use a
simple "count()" query to get the size.

To do this on a per query basis you would do

guery. addExtension("datanucleus.query.resultSizeMethod" , "count");

Extension: Type of Result Set (RDBMS)

‘-ﬁ;Extensi on

For RDBMS datastores, java.sqgl.ResultSet defines three possible result set types.

¥ forward-only : the result set is nhavegable forwards only

¥ scroll-sensitive : the result set is scrollable in both directions and is sensitive to changes in the
datastore

¥ scroll-insensitive : the result set is scrollable in both directions and is insensitive to changes in
the datastore

DataNucleus allows specification of this type as a query extension
datanucleus.rdbms.query.resultSetType

To do this on a per query basis you would do
guery. addExtension("datanucleus.rdbms.query.resultSetType" , "scroll-insensitive");

The default is forward-only . The benefit of the other two is that the result set will be scrollable and
hence objects will only be read in to memory when accessed. So if you have a large result set you
should set this to one of the scrollable values.

Extension: Result Set Control (RDBMS)

‘-’fg:Extensi on
B

DataNucleus RDBMS provides a useful extension allowing control over the ResultSetOs that are
created by queries. Some properties are available that give you the power to control whether the

11

result set is read only, whether it can be read forward only, the direction of fetching etc.

To do this on a per query basis you would do

guery. addExtension("datanucleus.rdbms.query.fetchDirection" , "forward");
guery. addExtension("datanucleus.rdbms.query.resultSetConcurrency” , “"read-only");

Alternatively you can specify these as persistence properties so that they apply to all queries for
that PMF. Again, the properties are

¥ datanucleus.rdbms.query.fetchDirection - controls the direction that the ResultSet is
navigated. By default this is forwards only. Use this property to change that.
¥ datanucleus.rdbms.query.resultSetConcurrency - controls whether the ResultSet is read only

or updateable.

Bear in mind that not all RDBMS support all of the possible values for these options. That said, they
do add a degree of control that is often useful.

12

JDOQL

JDO provides its own object-based query language (JDOQL), designed to have the power of SQL
queries, yet retaining the Java object relationship that exist in the developers application model.

A JDOQL query may be created in several ways. HereOs an example expressed in the 3 supported
ways

/I String-based JDOQL :

Query q = pmnewQuer(/'SELECT FROM mydomain.Person WHERE lastName == 'Jones' && age <
age_limit PARAMETERS int age_limit");

List <Persorm results = (List <Persorr)qg. execute(20);

/I Declarative JDOQL :

Query g = pmnewQuerf/Person class);

g. setFilter ("lastName == "'Jones' && age < age_limit");

g. declareParameters("int age_limit");

List <Persorn> results = . setParameters(20). executeList ();

/I Typed JDOQL :

JDOQLTypedQueBersor> tq = pmnewJDOQLTypedQuédrgrson class);
QPersoncand = QPersoncandidate ();

List <Persorr results =

E tg.filter (cand lastName eq("Jones"). and cand age It (tq.intParameter (
"age_limit"))))

E . setParameter("age_limit" , "20"). executeList ();

So here in our example we select all "Person” objects with surname of "Jones" and where the
persons age is below 20. The language is intuitive for Java developers, and is intended as their
interface to accessing the persisted data model. As can be seen above, the query is made up of
distinct parts: the class being processed (equates to the FROM clause in SQL), the data being
selected (the SELECT clause in SQL), the filter (the WHERE clause in SQL), together with any sorting
(the ORDER BY clause in SQL), etc.

We will cover the string-based and declarative modes of JDOQL API in this chapter, and the Typed
JDOQLis covered in its own chapter .

When using RDBMS all parts of a query are evaluated in-datastore . When using
LDAP, Excel, ODF, XML, JSON, GoogleStorage, AmazonS3 any query filter/ordering
etc is evaluated in-memory . When using Neo4j, HBase, MongoDB and Cassandra
any query filter/ordering etc are evaluated in-datastore where possible, with the
remainder evaluated in-memory

JDOQL Single-String syntax

JDOQL queries can be defined in a single-string form, as follows

13

query.html#jdoql_typed

SELECT [UNIQUE] [<result>] [INTO <result-class>]

= [FROM <candidate-class> [EXCLUDE SUBCLASSES]]
[WHERE <filter>]

[VARIABLES <variable declarations>]

[PARAMETERS <parameter declarations>]

[<import declarations>]

[GROUP BY <grouping>]

[ORDER BY <ordering>]

[RANGE <start>, <end>]

[T > I e mp T T M

The "keywords" in the query are shown in UPPER CASE but can be in UPPERor lower case (but not
MiXeD case). So giving an example

SELECT UNIQUE FROM mydomain.Employee ORDER BY departmentNumber

Candidate Class

By default the candidate "class" with JDOQL has to be a persistable class. This can then be referred

to in the query using the this keyword (just like in Java). Also by default your query will return
instances of subclasses of the candidate class. You can restrict to just instances of the candidate by
specifying to exclude subclasses (see EXCLUDE SUBCLASSES in the string-based syntax, or by
setSubclasses(false) when using the declarative API).

The "candidate" has an implicit "alias" in JDOQL, which is this (just like in Java).
So in the rest of the query you can refer to a field of the candidate as
this.{fieldName}

If the candidate has a table using a discriminator, the generated SQL for RDBMS
will include a restriction of the possible discriminator values to the candidate and
any applicable subclasses. If you want to override this and NOT have a
discriminator restriction imposed in the SQL then you provide the query
extension datanucleus.query.dontRestrictDiscriminator set to true.

Candidate Persistent Interface
.@?_:Extensi on

DataNucleus also allows you to specify a candidate class as persistent interface. This is used where
we want to query for instances of implementations of the interface. LetOs take an example. We have
an interface, and some implementations

14

@PersistenceCapable
public interface ComputerPeripheral

@PrimaryKey
long getld ();
void setld (long val);

m m m

@Persistent
String getManufacturer ();
void setManufacturer (String namg

T > mp

@Persistent
String getModel();
void setModel(String namg

=~ I [T m

@PersistenceCapable
public class Mouseimplements ComputerPeripheral {...}

@PersistenceCapable
public class Keyboard implements ComputerPeripheral {...}

So we have made our interface persistable, and defined the identity property(ies) there. The
implementations of the interface will use the identity defined in the interface. To query it we
simply do

Query q = pmnewQueryComputerPeripheral. class);
List <ComputerPeripheral> results = g. executeList ();

The key rules are

¥ You must define the interface as persistent
¥ The interface must define the identity/primary key member(s)

¥ The implementations must have the same definition of identity and primary key

Filter
The most important thing to remember when defining the filter for JDOQL is that think how you
would write it in Java, and its likely the same . The filter has to be a boolean expression, and can

include the candidate , fields/properties , literals , methods, parameters , variables , operators ,
instanceof , subqueries and casts.

With the Declarative API you would define the filter using the Query.filter method, like this

g. filter ("this.inventory.name == 'Mylnventory");

15

#jdoql_candidate
#jdoql_fields_properties
#jdoql_literals
#jdoql_methods
#jdoql_parameters
#jdoql_variables
#jdoql_operators
#jdoql_instanceof
#jdoql_subqueries
#jdoql_casts

Fields/Properties

In JDOQL you refer to fields/properties in the query by referring to the field/bean name. For
example, if you are querying a candidate class called Product and it has a field "price", then you
access it like this

price < 150.0

Note that, just like in Java, if you want to refer to a field/property of the candidate you can prefix
the field by its implicit alias this

this . price < 150.0

You can also chain field references, so if you have a candidate class Product with a field of
(persistable) type Inventory, which has a field name, then you could do

this . inventory . name== " Backup

In addition to the persistent fields, you can also access "public static final" fields of any class. You
can do this as follows

taxPercent < mydomainProduct. TAX_BAND_A

So this will find all products that include a tax percentage less than some "BAND A" level. Where
you are using "public static final" fields you can either fully-qualify the class name or you can
include it in the "imports" section of the query (see later).

n With JDOQL you do not do explicit joins. You instead use the fields/properties and
navigate to the object you want to make use of in your query

With 1-1/N-1 relations this is simply a reference to the field/property, and place some restriction on
it, like this

this . inventory . name=="Mylnventory"
With 1-N/M-N relations you would introduce a JDOQL variable and use something like
containerField . contains (elemVal)

and thereafter refer to elemVar for the element in the collection to place restrictions on the
element. Similarly you can use elemVar in the result clause

16

#jdoql_variables

‘-ﬁ;Extensi on
=

RDBMS : By default when you navigate through a 1-1/N-1 relation in JDOQL DataNucleus will
decide to join using either LEFT OUTER JOIN or INNER JOIN based on whether the relation is
nullable . If it is nullable then LEFT OUTER JOIN will be used. You can change this default by
specifying the persistence property (to apply to all queries) or query extension
datanucleus.query.jdogl.navigationJoinType and set it to either "INNERJOIN" or
"LEFTOUTERJOIN". You can also set the default for the filter only using the persistence property(to
apply to all queries) or query extension datanucleus.query.jdogl.navigationJoinTypeForFilter

and set it to either "INNERJOIN" or "LEFTOUTERJOIN".

Methods

When writing the "filter" for a JDOQL Query you can make use of some methods on the various Java
types. The range of methods included as standard in JDOQL is not as flexible as with the true Java
types, but the ones that are available are typically of much use. While DataNucleus supports all of
the methods in the JDO standard, it also supports several yet to be standardised (extension) method.
The tables below also mark whether a particular method is supported for evaluation in-memory .

These methods are not available for use with all of the supported datastores to be
executed in-datastore. RDBMS, in general, supports the vast majority, whilst
MongoDB, Neo4j, Cassandra support a select few methods in-datastore.

" You can add "in-memory" evaluation support for other methods using this

= Extension
=Point

" You can add "RDBMS datastore" support for other methods using this

. Extension
=Point

String Methods

Method Description Stand In-
ard Memo
ry

startsWith(String) Returns if the string starts with the passed string # #

startsWith(String, int) Returns if the string starts with the passed string, from the # #
passed position

endsWith(String) Returns if the string ends with the passed string # #

indexOf(String) Returns the first position of the passed string # #

indexOf(String,int) Returns the position of the passed string, after the passed # #
position

17

#jdoql_inmemory
../extensions/extensions.html#query_method_evaluators
../extensions/extensions.html#rdbms_sql_method

Method Description

substring(int) Returns the substring starting from the passed position
substring(int,int) Returns the substring between the passed positions
toLowerCase() Returns the string in lowercase

toUpperCase() Retuns the string in UPPERCASE

matches(String Returns whether string matches the passed expression. The
pattern) pattern argument follows the rules of

java.lang.String.matches method.

charAt(int) Returns the character at the passed position

length() Returns the length of the string

trim() Returns a trimmed version of the string

concat(String) Concatenates the current string and the passed string
equals(String) Returns if the strings are equal

equalsignoreCase(Stri Returns if the strings are equal ignoring case
ng)

replaceAll(String, Returns the string with all instances of strl replaced by str2
String)
trimLeft() Returns a trimmed version of the string (trimmed for

leading spaces). Only on RDBMS, Neo4j

trimRight() Returns a trimmed version of the string (trimmed for
trailing spaces). Only on RDBMS, Neo4j

Stand
ard

O O H O OH®H H®

L I N R T S = S

In-
Memo

*OO®F O H O OH H

O O H O OH O H OH

HereOs an example using a Product class, looking for objects which their abbreviation is the

beginning of a trade name. The trade name is provided as parameter.

Declarative JDOQL
Query query = pmnewQuerf/Product. class);
guery. setFilter (":tradeName.startsWith(this.abbreviation)");

List <Product> results = query. setParameters("Workbook Advanced). executeList ();

Single - String JDOQL

Query query = pmnewQuerf/'SELECT FROM mydomain.Product WHERE
:tradeName.startsWith(this.abbreviation)");

List results = (List)query. execute("Workbook Advanced);

Collection Methods

18

Method Description Stand In-

ard Memo
ry
isEmpty() Returns whether the collection is empty # #
contains(value) Returns whether the collection contains the passed element # #
size() Returns the number of elements in the collection # #
get(int) Returns the element at that position of the List # #
indexOf(elem) Returns the position in the List of the element. $ #

HereOs an example demonstrating use of contains(). We have an Inventory class that has a
Collection of Product objects, and we want to find the Inventory objects with 2 particular Products
in it. Here we make use of a variable (prd to represent the Product being contained

Declarative JDOQL

Query query = pmnewQuerfinventory . class);

query. setFilter ("products.contains(prd) && (prd.name=="product 1' ||
prd.name=='product 2')");

List <Inventory > results = query. executeList ();

Single - String JDOQL.:

Query query = pmnewQuerf/'SELECT FROM mydomain.Inventory %

E "WHERE products.contains(prd) && (prd.name=="product 1' || prd.name=="product
2)")

List results = (List)query. execute();

Map Methods

Method Description Stand In-
ard Memo

ry
iSEmpty() Returns whether the map is empty # #
containskKey(key) Returns whether the map contains the passed key # #
containsValue(value) Returns whether the map contains the passed value # #
get(key) Returns the value from the map with the passed key # #
size() Returns the number of entries in the map # #
containsEntry(key, Returns whether the map contains the passed entry $ $
value)

HereOs an example using a Product class as a value in a Map. Our example represents an
organisation that has several Inventories of products. Each Inventory of products is stored using a
Map, keyed by the Product name. The query searches for all Inventories that contain a product with

the name "product 1".

19

Declarative JDOQL

Query query = pmnewQuerfmydomaininventory . class, "products.containsKey('product

")

List <Inventory > results = query. execute();

Single - String JDOQL

Query query = pmnewQuerf"'SELECT FROM mydomain.Inventory WHERE
products.containsKey(‘product 1')");

List results = (List)query. execute();

HereOs the source code for reference

class Inventory

{

E MagsString , Product> products;

E
}

class Product

{
E
}

java.util.Date Temporal Methods

Method

getDate()

getMonth()

getYear()

getHour()

getMinute()

getSecond()

getDayOfWeek()

20

Description

Returns the day (of the month) for the date (java.util.Date
types) in the timezone it was stored

Returns the month for the date (java.util.Date types) (0-11)
in the timezone it was stored

Returns the year for the date (java.util.Date types) in the
timezone it was stored

Returns the hour for the time (java.util.Date types) in the
timezone it was stored

Returns the minute for the time (java.util.Date types) in the
timezone it was stored

Returns the second for the time (java.util.Date types) in the
timezone it was stored

Returns the day of the week for the date (java.util.Date
types) (1-7) in the timezone it was stored

Stand
ard

In-
Memo
ry

#

java.time Temporal Methods

Class

LocalDate

LocalDate

LocalDate

LocalDate

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalTime

LocalTime

LocalTime

MonthDay
MonthDay
Period
Period

Period

Method

getDayOfMonth()

getDayOfWeek()

getMonthValue()

getYear()

getDayOfMonth()

getDayOfWeek()

getMonthValue()

getYear()

getHour()

getMinute()

getSecond()

getHour()

getMinute()

getSecond()

getMonthValue()
getDayOfMonth()
getDays()
getMonths()

getYears()

Description

Returns the day (of the month) for the date (1-
31) in the timezone it was stored

Returns the day of the week for the date (1-7) in
the timezone it was stored

Returns the month for the date (1-12) in the
timezone it was stored

Returns the year for the date in the timezone it
was stored

Returns the day (of the month) for the date in
the timezone it was stored

Returns the day of the week for the date (1-7) in
the timezone it was stored

Returns the month for the date (1-12) in the
timezone it was stored

Returns the year for the date in the timezone it
was stored

Returns the hour for the time in the timezone it
was stored

Returns the minute for the time in the timezone
it was stored

Returns the second for the time in the timezone
it was stored

Returns the hour for the time in the timezone it
was stored

Returns the minute for the time in the timezone
it was stored

Returns the second for the time in the timezone
it was stored

Returns the month (1-12)

Returns the day of the month (1-31)
Returns the number of days
Returns the number of months

Returns the number of years

Stan In-
dard Me
mor
y
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

21

Class

YearMonth

YearMonth

Jodatime Temporal Methods

Class

Interval

Interval

Enum Methods

Method

ordinal()

toString()

Other Methods

Class

{
{

java.util.Optional

java.util.Optional

java.util.Optional

22

contains(object)

isPresent()

get()

orElse(object)

Method Description Stan In-
dard Me
mor
getMonthValue() Returns the month #
getYear() Returns the year # #
Method Description Stan In-
dard Me
mor
getStart() Returns the start of an Interval $ #
getEnd() Returns the end of an Interval $ #
Description Stand In-
ard Memo
ry
Returns the ordinal of the enum (not implemented for enum # #
expression when persisted as a string)
Returns the string form of the enum (not implemented for # #
enum expression when persisted as a numeric)
Method Description Stan In-
dard Me
mor
length Returns the length of an array. Only on RDBMS ~ $

Returns true if the array contains the object. $ $
Only on RDBMS

Returns whether the value is present in this # #
optional.

Returns the delegated object # #
Returns the value of the optional if present, # #

otherwise the supplied object.

Static Methods

Method

Math.abs(number)
Math.sgrt(number)
Math.cos(number)
Math.sin(number)
Math.tan(number)
Math.acos(number)
Math.asin(number)
Math.atan(number)
Math.ceil(number)
Math.exp(number)
Math.floor(number)
Math.log(number)

Math.round(number)

Math.toDegrees(num

ber)

Math.toRadians(num

ber)

Math.power(number,
power)

JDOHelper.getObjectl

d(object)

JDOHelper.getVersion

(object)

SQL_rollup({object})

SQL_cube({object})

SQL_boolean({sql})

SQL_numeric({sql})

Description

Returns the absolute value of the passed number
Returns the square root of the passed number
Returns the cosine of the passed number
Returns the absolute value of the passed number
Returns the tangent of the passed number
Returns the arc cosine of the passed number
Returns the arc sine of the passed number
Returns the arc tangent of the passed number
Returns the ceiling of the passed number
Returns the exponent of the passed number
Returns the floor of the passed number

Returns the log(base €) of the passed number
Returns the rounded value of the passed number

Returns the degrees of the passed radians value

Returns the radians of the passed degrees value

Returns the passed number to the specified power

Returns the object identity of the passed persistent object

Returns the version of the passed persistent object

Perform a rollup operation over the results.
RDBMS e.g DB2, MSSQL, Oracle

Only for some

Perform a cube operation over the results.
RDBMS e.g DB2, MSSQL, Oracle

Only for some

Embed the provided SQL and return a boolean result. Only
on RDBMS
Embed the provided SQL and return a numeric result. Only

on RDBMS

Stand
ard

s H O® O OH O O HF K OH O OH OH O H R

In-

Memo

_‘
<

* B O H O O®F O HF O OH O OHF OH O OH O HF OH O H OH O OH

23

Geospatial Methods

In terms of geospatial types that are part of the JRE

Class Method Description Stan In-
dard Me

mor
y

java.awt.Point getX() Returns the X coordinate. Only on RDBMS $ #

java.awt.Point getY() Returns the Y coordinate. Only on RDBMS $ #

java.awt.Rectangl getX() Returns the X coordinate. Only on RDBMS $ #

e

java.awt.Rectangl getY() Returns the Y coordinate. Only on RDBMS $ #

e

java.awt.Rectangl getWidth() Returns the width. Only on RDBMS $ #

e

java.awt.Rectangl getHeight() Returns the height. Only on RDBMS $ #

e

In terms of geospatial types that are provided by more specialised libraries, such as JTS, the
following applies.

‘-f;::Extensi on
=

When querying spatial data you can make use of a set of spatial methods on the various Java
geometry types. The list contains all of the methods detailed in Section 3.2 of the OGC Simple
Features specification . Additionally DataNucleus provides some commonly required methods like
bounding box test and datastore-specific methods. The following tables list all available methods as

well as information about which RDBMS implement them. An entry in the "Result” column
indicates, whether the function may be used in the result part of a JDOQL query.

Methods on Type Geometry (OGC SF 3.2.10)

Method Description Res Pos My Or
ult tGl SQ acl

S L e

Sp

ati

al

getDimension() Returns the dimension of the Geometry. # # # #
getGeometryType() Returns the name of the instantiable subtype # # # #

of Geometry.

getSRID() Returns the Spatial Reference System ID for # # # #
this Geometry.

24

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

Method Description

isEmpty() TRUE if this Geometry corresponds to the
empty set.
isSimple() TRUE if this Geometry is simple, as defined in

the Geometry Model.

getBoundary() Returns a Geometry that is the combinatorial

boundary of the Geometry.

getEnvelope() Returns the rectangle bounding Geometry as a
Polygon.

toText() Returns the well-known textual
representation.

toBinary() Returns the well-known binary

representation.

[1] Oracle does not allow boolean expressions in the SELECT-Iist.

Methods on Type Point (OGC SF 3.2.11)

Method Description

getX() Returns the x-coordinate of the Point as a
Double.

getY() Returns the y-coordinate of the Point as a
Double.

Methods on Type Curve (OGC SF 3.2.12)

Method Description
getStartPoint() Returns the first point of the Curve.
getEndPoint() Returns the last point of the Curve.

Res
ult

%
[1]

%
[1]

Res
ult

[1]

Res
ult

Pos My
tGl SQ
S L
#
|#
#
|#
#
|#
Pos My
tGl SQ
S L
#
#
Pos My
tGl SQ
S L
#
#

Or
acl

Sp
ati
al

Or
acl

Sp
ati
al

Or
acl

Sp

ati
al

25

Method Description

isRing() Returns TRUE if Curve is closed and simple.

[1] Oracle does not allow boolean expressions in the SELECT-list.

Methods on Type Curve / MultiCurve (OGC SF 3.2.12, 3.2.17)

Method Description

isClosed() Returns TRUE if Curve/MultiCurve is closed,
i.e., if StartPoint(Curve) = EndPoint(Curve).

getLength() Returns the length of the Curve/MultiCurve.

[1] Oracle does not allow boolean expressions in the SELECT-Iist.

Methods on Type LineString (OGC SF 3.2.13)

Method Description

getNumPoints() Returns the number of points in the
LineString.

getPointN(Integer) Returns Point n.

Methods on Type Surface / MultiSurface (OGC SF 3.2.14, 3.2.18)

Method Description

getCentroid() Returns the centroid of Surface/MultiSurface,
which may lie outside of it.

26

Res Pos
ult tGl
S
o H
(1]
Res Pos
ult tGl
S
o #
(1]
#
Res Pos
ult tGl
1] S
#
#
Res Pos
ult tGl
S
#

My
SQ

My
SQ

My
SQ

My
SQ

[1]

Or
acl

Sp
ati
al

Or
acl

Sp
ati
al

Or
acl

Sp
ati
al

Or
acl

Sp
ati
al

Method Description
getArea() Returns the area of Surface/MultiSurface.
getPointOnSurface() Returns a Point guaranteed to lie on the

surface.

[1] MySQL does not implement these methods. [2] Oracle takes an argument to this method (see

Oracle docs)

Methods on Type Polygon (OGC SF 3.2.15)

Method Description

getExteriorRing() Returns the exterior ring of Polygon.
getNumlinteriorRing() Returns the number of interior rings.

getinteriorRingN(Integer) Returns the nth interior ring.

Methods on Type GeomCollection (OGC SF 3.2.16)

Method Description

Returns the number of geometries in the
collection.

getNumGeometries()

getGeometryN(Integer)

Methods that test Spatial Relationships (OGC SF 3.2.19)

Returns the nth geometry in the collection.

Res Pos My

ult

tGl

S

SQ

L

Res Pos My
ult tGl SQ
S L
#
#
#
Res Pos My
ult tGl SQ
S L
#
#

Or
acl

Sp
ati
al

[2]

Or
acl

Sp
ati
al

Or
acl

Sp

ati
al

27

https://docs.oracle.com/database/121/SPATL/sdo_geom-sdo_pointonsurface.htm#SPATL1124

Method

equals(Geometry)

disjoint(Geometry)

touches(Geometry)

within(Geometry)

overlaps(Geometry)

crosses(Geometry)

intersects(Geometry)

contains(Geometry)

relate(Geometry, String)

bboxTest(Geometry)

Description

TRUE if the two geometries are spatially
equal.

TRUE if the two geometries are spatially
disjoint.
TRUE if the first Geometry spatially touches

the other Geometry.

TRUE if first Geometry is completely
contained in second Geometry.

TRUE if first Geometries is spatially
overlapping the other Geometry.

TRUE if first Geometry crosses the other
Geometry.

TRUE if first Geometry spatially intersects the
other Geometry.

TRUE if second Geometry is completely
contained in first Geometry.

TRUE if the spatial relationship specified by
the patternMatrix holds.

Returns TRUE if if the bounding box of this
Geometry overlaps the passed GeometryOs
bounding box

[1] Oracle does not allow boolean expressions in the SELECT-Iist.

Res Pos My

ult

[1]

%

%

%

%

%

%

%

%

%
[1]

tGl
S

SQ
L

%
[2]

%
[2]
%
[2]
%
[2]

%
[2]

%
[2]

%
[2]

[2] MySQL does not implement these methods according to the specification. They return the same
result as the corresponding MBR-based methods.

Methods on Distance Relationships (OGC SF 3.2.20)

Method

distance(Geometry)

[1] MariaDB 5.3.3+ implements this.

28

Description

Returns the distance between the two
geometries.

Res Pos My
ult tGl SQ
S L
H#H H
[1]

Or
acl

Sp
ati
al

Or
acl

Sp
ati
al

Methods that implement Spatial Operators (OGC SF 3.2.21)

Method

intersection(Geometry)

difference(Geometry)

union(Geometry)

symDifference(Geometry)

buffer(Double)

convexHull()

[1] These methods are currently not implemented in MySQL. They may appear in future releases.

Description

Returns a Geometry that is the set intersection
of the two geometries.

Returns a Geometry that is the closure of the
set difference of the two geometries.

Returns a Geometry that is the set union of the
two geometries.

Returns a Geometry that is the closure of the
set symmetric difference of the two
geometries.

Returns as Geometry defined by buffering a
distance around the Geometry.

Returns a Geometry that is the convex hull of
the Geometry.

Res Pos My Or

ult

tGl
S

Static Methods for Constructing a Geometry Value given its Well-known Representation (OGC

SF 3.2.6, 3.2.7)

Method

Spatial.geomFromText(String,
Integer)

Spatial.pointFromText(String,
Integer)

Spatial.lineFromText(String,
Integer)

Spatial.polyFromText(String,
Integer)

Spatial. mPointFromText(String,
Integer)

Description

Construct a Geometry value given its well-
known textual representation.

Construct a Point given its well-known textual
representation.

Construct a LineString given its well-known
textual representation.

Construct a Polygon given its well-known
textual representation.

Construct a MultiPoint given its well-known
textual representation.

Res Pos
ult tGl
1] S

$ #

$ #

$ #

$ #

$ #

SQ
L

[1]

[1]

[1]

[1]

[1]

[1]

My
SQ

acl
e
Sp
ati
al

#

Or
acl

Sp

ati
al

29

Method Description Res Pos My Or

ult tGlI SQ acl

1] S L e
Sp
ati
al
Spatial.mLineFromText(String, Construct a MultiLineString given its well- #
Integer) known textual representation.
Spatial. mPolyFromText(String, Construct a MultiPolygon given its well- #
Integer) known textual representation.
Spatial.geomCollFromText(Strin Construct a GeometryCollection given its well- #
g, Integer) known textual representation.
Spatial.geomFromWKB(String, Construct a Geometry value given its well- #
Integer) known binary representation.
Spatial.pointFromWKB(String, Construct a Point given its well-known binary #
Integer) representation.
Spatial.lineFromWKB(String, Construct a LineString given its well-known #
Integer) binary representation.
Spatial.polyFromWKB(String, Construct a Polygon given its well-known #
Integer) binary representation.
Spatial. mPointFromWKB(String Construct a MultiPoint given its well-known #
, Integer) binary representation.
Spatial.mLineFromWKB(String, Construct a MultiLineString given its well- #
Integer) known binary representation.
Spatial. mPolyFromWKB(String, Construct a MultiPolygon given its well- #
Integer) known binary representation.
#

Spatial.geomCollFromWKB(Stri
ng, Integer)

[1] These methods canOt be used in the return part because itOs not possible to determine the return

type from the parameters.

Supplementary Static Methods

Construct a GeometryCollection given its well-
known binary representation.

These functions are only supported on certain RDBMS.

30

