
JPA Query Guide (v5.2)

Table of Contents
Query API . Ê2

setFirstResult(), setMaxResults() . Ê2

setHint() . Ê2

setParameter() . Ê3

getResultList() . Ê3

getSingleResult() . Ê3

executeUpdate() . Ê4

setFlushMode() . Ê4

setLockMode() . Ê4

Large Result Sets : Loading Results at Commit() . Ê4

Result Set : Caching of Results . Ê5

Large Result Sets : Size . Ê5

RDBMS : Result Set Type . Ê5

RDBMS : Result Set Control . Ê6

JPQL. Ê7

SELECT Syntax . Ê7

FROM Clause . Ê7

Fetched Fields . Ê10

WHERE clause (filter) . Ê11

GROUP BY/HAVING clauses . Ê11

ORDER BY clause. Ê12

Fields/Properties . Ê12

Operators . Ê13

Literals . Ê13

Parameters . Ê14

CASE expressions . Ê15

JPQL Functions . Ê15

Collection Fields . Ê19

Map Fields . Ê19

Subqueries . Ê20

Specify candidates to query over . Ê21

Range of Results . Ê21

Query Result . Ê21

Query Execution . Ê23

JPQL In-Memory queries . Ê23

Named Query . Ê24

Saving a Query as a Named Query . Ê25

JPQL Strictness . Ê25

JPQL : SQL Generation for RDBMS . Ê25

JPQL DELETE Queries. Ê26

JPQL UPDATE Queries . Ê26

JPQL BNF Notation . Ê27

Geospatial Functions . Ê31

Criteria . Ê43

Creating a Criteria query . Ê43

JPQL equivalent of the Criteria query . Ê43

Criteria API : Result clause . Ê43

Criteria API : From clause joins . Ê44

Criteria API : Filter . Ê44

Criteria API : Ordering . Ê45

Criteria API : Parameters . Ê46

Criteria API : Subqueries . Ê47

Criteria API : IN operator . Ê47

Criteria API : Result as Tuple . Ê48

Executing a Criteria query . Ê48

Criteria API : UPDATE query . Ê48

Criteria API : DELETE query . Ê49

Static MetaModel . Ê50

Native Queries . Ê53

Input Parameters . Ê53

Range of Results . Ê53

SQL Syntax Checks . Ê54

Query Execution . Ê54

SQL Result Definition . Ê54

Named Native Query . Ê57

Cassandra Native (CQL) Queries . Ê58

Stored Procedures . Ê59

Simple execution, returning a result set . Ê59

Simple execution, returning output parameters . Ê59

Generalised execution, for multiple result sets . Ê60

Named Stored Procedure Queries . Ê60

Query Cache . Ê61

Generic Query Compilation Cache . Ê61

Datastore Query Compilation Cache . Ê61

Query Results Cache . Ê62

Once you have persisted objects you need to query them. For example if you
have a web application representing an online store, the user asks to see all
products of a particular type, ordered by the price. This requires you to query
the datastore for these products. JPA specifies support for

¥ JPQL : a string-based query language between SQL and OO.

¥ Criteria : following JPQL syntax but providing an API supporting refactoring
of classes and the queries they are used in.

¥ Native : equates to SQL when using RDBMS, and CQL when using Cassandra.

¥ Stored Procedures : in-datastore invocation of stored procedures for RDBMS
datastores.

Which query language is used is down to the developer. The data-tier of an
application could be written by a primarily Java developer, who would typically
think in an object-oriented way and so would likely prefer JPQL. On the other
hand the data-tier could be written by a datastore developer who is more
familiar with SQL concepts and so could easily make more use of SQL. This is
the power of an implementation like DataNucleus in that it provides the
flexibility for different people to develop the data-tier utilising their own skills
to the full without having to learn totally new concepts.

There are 2 categories of queries with JPA :-

¥ Programmatic Query where the query is defined using the JPA Query API.

¥ Named Query where the query is defined in MetaData and referred to by its
name at runtime(for JPQL, Native Query and Stored Procedures).

1

#jpql
#criteria
#native
#stored_procedures
#jpql_named
#native_named
#stored_procedures_named

Query API
LetÕs now try to understand the Query API in JPA . We firstly need to look at a typical Query.
WeÕll take 2 examples

LetÕs create a JPQL query to highlight its usage

Query q = em. createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ASC");
q. setParameter("threshold" , my_threshold);
List results = q. getResultList ();

In this Query, we implicitly select JPQL by using the method EntityManager.createQuery() , and the
query is specified to return all objects of type Product (or subclasses) which have the field param2
less than some threshold value ordering the results by the value of field param1 . WeÕve specified
the query like this because we want to pass the threshold value in as a parameter (so maybe
running it once with one value, and once with a different value). We then set the parameter value
of our threshold parameter. The Query is then executed to return a List of results. The example is to
highlight the typical methods specified for a (JPQL) Query.

And for a second example we create a native (SQL) query

Query q = em. createNativeQuery ("SELECT * FROM Product p WHERE p.param2 < ?1");
q. setParameter(1, my_threshold);
List results = q. getResultList ();

So we implicitly select SQL by using the method EntityManager.createNativeQuery() , and the query
is specified like in the JPQL case to return all instances of type Product (using the table name in this
SQL query) where the column param2 is less than some threshold value.

setFirstResult(), setMaxResults()
A query will by default return all of the results that it finds. You can restrict how many results are
returned by use of two methods. So you could do

Query q = em. createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ASC");
q. setFirstResult (1);
q. setMaxResults(3);

so we will get results 1, 2, and 3 returned only. The first result starts at 0 by default.

setHint()
JPAÕs query API allows implementations to support extensions ("hints") and provides a simple

2

http://www.datanucleus.org/javadocs/javax.persistence/2.2/javax/persistence/Query.html

interface for enabling the use of such extensions on queries.

q. setHint ("{extension_name}" , value);

JPA supports some standard hints, namely javax.persistence.fetchgraph ,
javax.persistence.loadgraph , javax.persistence.query.timeout ,
javax.persistence.lock.timeout . DataNucleus provides various vendor-specific hints for different
types of queries (see different parts of this documentation).

setParameter()
When queries take values (literals) it is usually best practice to define these as parameters. JPAÕs
query API supports named and numbered parameters and provides method for setting the value of
particular parameters. To set a named parameter, for example, you could do

Query q = em. createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ASC");
q. setParameter("threshold" , value);

To set a numbered parameter you could do

Query q = em. createQuery("SELECT p FROM Product p WHERE p.param2 < ?1 ORDER BY
p.param1 ASC");
q. setParameter(1, value);

Numbered parameters are numbered from 1.

getResultList()
To execute a JPA query you would typically call getResultList . This will return a List of results. This
should not be called when the query is an "UPDATE"/"DELETE".

Query q = em. createQuery("SELECT p FROM Product p WHERE p.param2 < :threshold ORDER BY
p.param1 ASC");
q. setParameter("threshold" , value);
List results = q. getResultList ();

getSingleResult()
To execute a JPA query where you are expecting a single value to be returned you would call
getSingleResult . This will return the single Object. If the query returns more than one result then
you will get a NonUniqueResultException . This should not be called when the query is an
"UPDATE"/"DELETE".

3

Query q = em. createQuery("SELECT p FROM Product p WHERE p.param2 = :value");
q. setParameter("value" , val1);
Product prod = q. getSingleResult ();

executeUpdate()
To execute a JPA UPDATE/DELETE query you would call executeUpdate. This will return the number
of objects changed by the call. This should not be called when the query is a "SELECT".

Query q = em. createQuery("DELETE FROM Product p");
int number = q. executeUpdate();

setFlushMode()
By default, when a query is executed it will be evaluated against the contents of the datastore at the
point of execution. If there are any outstanding changes waiting to be flushed then these will not
feature in the results. To make sure all outstanding changes are respected

q. setFlushMode(FlushModeType. AUTO);

setLockMode()
JPA allows control over whether objects found by a fetch (JPQL query) are locked during that
transaction so that other transactions canÕt update them in the meantime. For example

q. setLockMode(LockModeType. PESSIMISTIC_READ);

You can also specify this for all queries for all EntityManagers using a persistence property
datanucleus.rdbms.useUpdateLock .

Large Result Sets : Loading Results at Commit()

When a transaction is committed by default all remaining results for a query are loaded so that the
query is usable thereafter. With a large result set you clearly donÕt want this to happen. So in this
case you should set the query hint datanucleus.query.loadResultsAtCommit to false, like this

query. setHint ("datanucleus.query.loadResultsAtCommit" , "false");

4

Result Set : Caching of Results

When you execute a query, the query results are typically loaded when the user accesses each row.
Results that have been read can then be cached locally. You can control this caching to optimise it
for your memory requirements. You can set the query hint datanucleus.query.resultCacheType
and it has the following possible values

¥ weak : use a weak reference map for caching (default)

¥ soft : use a soft reference map for caching

¥ strong : use a Map for caching (objects not garbage collected)

¥ none : no caching (hence uses least memory)

To do this on a per query basis, you would do

query. setHint ("datanucleus.query.resultCacheType" , "weak");

Large Result Sets : Size

If you have a large result set you clearly donÕt want to instantiate all objects since this would hit the
memory footprint of your application. To get the number of results many JDBC drivers, for
example, will load all rows of the result set. This is to be avoided so DataNucleus provides control
over the mechanism for getting the size of results. The persistence property
datanucleus.query.resultSizeMethod has a default of last (which means navigate to the last
object, hence hitting the JDBC driver problem). On RDBMS, if you set this to count then it will use a
simple "count()" query to get the size.

To do this on a per query basis you would do

query. setHint ("datanucleus.query.resultSizeMethod" , "count");

RDBMS : Result Set Type

For RDBMS datastores, java.sql.ResultSet defines three possible result set types.

¥ forward-only : the result set is navegable forwards only

¥ scroll-sensitive : the result set is scrollable in both directions and is sensitive to changes in the
datastore

¥ scroll-insensitive : the result set is scrollable in both directions and is insensitive to changes in

5

the datastore

DataNucleus allows specification of this type as a query extension
datanucleus.rdbms.query.resultSetType .

To do this on a per query basis you would do

query. setHint ("datanucleus.rdbms.query.resultSetType" , "scroll-insensitive");

The default is forward-only . The benefit of the other two is that the result set will be scrollable and
hence objects will only be read in to memory when accessed. So if you have a large result set you
should set this to one of the scrollable values.

RDBMS : Result Set Control

DataNucleus RDBMS provides a useful extension allowing control over the ResultSetÕs that are
created by queries. You have at your convenience some properties that give you the power to
control whether the result set is read only, whether it can be read forward only, the direction of
fetching etc.

To do this on a per query basis you would do

query. setHint ("datanucleus.rdbms.query.fetchDirection" , "forward");
query. setHint ("datanucleus.rdbms.query.resultSetConcurrency" , "read-only");

Alternatively you can specify these as persistence properties so that they apply to all queries for
that PMF/EMF. Again, the properties are

¥ datanucleus.rdbms.query.fetchDirection - controls the direction that the ResultSet is
navigated. By default this is forwards only. Use this property to change that.

¥ datanucleus.rdbms.query.resultSetConcurrency - controls whether the ResultSet is read only
or updateable.

Bear in mind that not all RDBMS support all of the possible values for these options. That said, they
do add a degree of control that is often useful.

6

JPQL
The JPA specification defines JPQL (a pseudo-OO query language, with SQL-like syntax), for
selecting objects from the datastore. To provide a simple example, this is what you would do

Query q = em. createQuery("SELECT p FROM Person p WHERE p.lastName = 'Jones'");
List results = q. getResultList ();

This finds all "Person" objects with surname of "Jones". You specify all details in the query. The
Person specified in the query is the entity name of our entity. This defaults to the name of the class
itself, but you can specify it explicitly in the mapping if wanting to use something different.

SELECT Syntax
In JPQL queries you define the query in a single string, defining the result, the candidate entity(s),
the filter, any grouping, and the ordering. This string has to follow the following pattern

SELECT [< result >]
Ê FROM <from_entities_and_variables >
Ê [WHERE <filter >]
Ê [GROUP BY <grouping>] [HAVING <having>]
Ê [ORDER BY <ordering >]

The "keywords" in the query are shown in UPPER CASE, and are case-insensitive.

If you set the persistence property datanucleus.query.jpql.allowRange to true then you can
optionally also specify the range of results required in the JPQL string after the ordering. It accepts
the following format when this is specified

SELECT [<result>]
Ê FROM <from_entities_and_variables>
Ê [WHERE <filter>]
Ê [GROUP BY <grouping>] [HAVING <having>]
Ê [ORDER BY <ordering>]
Ê [RANGE <fromInclusive>,<toExclusive>]

where fromInclusive is the first row to be returned (origin = 0), and toExclusive is the row after the
last one to be returned).

FROM Clause
The FROM clause declares query identification variables that represent iteration over objects in the
database. The syntax of the FROM clause is as follows:

7

from_clause ::= FROM identification_variable_declaration {,
{identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join | fetch_join
}*
range_variable_declaration ::= entity_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable
[join_condition]
fetch_join ::= join_spec FETCH join_association_path_expression
join_association_path_expression ::= join_collection_valued_path_expression |
join_single_valued_path_expression |
Ê TREAT(join_collection_valued_path_expression AS subtype) |
TREAT(join_single_valued_path_expression AS subtype)

join_collection_valued_path_expression::=
identification_variable.{single_valued_embeddable_object_field.}*collection_valued_fie
ld
join_single_valued_path_expression::=
identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_
field
join_spec ::= [LEFT [OUTER] | INNER] JOIN
join_condition ::= ON conditional_expression
collection_member_declaration ::= IN (collection_valued_path_expression) [AS]
identification_variable

The FROM clause firstly defines the candidate entity for the query. You can specify the candidate
fully-qualified, or you can specify just the entity name . Using our example

Using candidate name fully qualified
SELECT p FROM mydomain.Person p

Using entity name
SELECT p FROM Person p

By default the entity name is the last part of the class name (without the package), but you can
specify it in metadata

Firstly, in XML metadata

<entity class= "mydomain.Person" name="ThePerson">
Ê ...
</entity>

or using annotations

8

@Entity(name="ThePerson")
public class Person ...

The FROM clause also allows a user to add some explicit joins to related entities, and assign aliases
to the joined entities. These are then usable in the filter/ordering/result etc. If you donÕt add any
joins DataNucleus will add joins where they are implicit from the filter expression for example. The
FROM clause is of the following structure

FROM {candidate_entity} {candidate_alias}
Ê [[[LEFT [OUTER] | INNER] JOIN] join_spec [join_alias] [join_condition] *

With JPQL you are explicitly stating that the join across join_spec is performed as "LEFT OUTER" or
"INNER" (rather than just leaving it to DataNucleus to decide which to use). Note that the join_spec
can be a relation field, or alternately if you have a Map of non-Entity keys/values then also the Map
field. If you provide the join_alias then you can use it thereafter in other clauses of the query. The
join_condition is an optional ON clause that is in addition to navigating along the relation that was
specified.

Some examples of FROM clauses.

Join across 2 relations, allowing referral to Address (a) and Owner (o)
SELECT p FROM Person p JOIN p.address a JOIN a.owner o WHERE o.name = 'Fred'

Join to a Map relation field and access to the key/value of the Map.
SELECT VALUE(om) FROM Company c INNER JOIN c.officeMap om ON KEY(om) = 'London'

If you specify "LEFT OUTER FETCH" or "INNER FETCH" (i.e you specify FETCH) this means that you
want those fields/properties fetching by this query. This doesnÕt mean that DataNucleus will
definitely fetch them in the same query (because sometimes it is impossible to fetch things like
multi-valued fields in a single query) but that it will attempt to fetch all fields that are selected (as
well as the ones that are defaulted to EAGER).

! DataNucleus JPA also allows RIGHT OUTER JOIN, though this is not part of the JPA
spec.

FROM : Candidate that is @MappedSuperclass

In strict JPA the entity name cannot be a MappedSuperclass entity name. That is, if you have an
abstract superclass that is persistable, you cannot query for instances of that superclass and its
subclasses. We consider this a significant shortcoming of the querying capability, and allow the
entity name to also be of a MappedSuperclass . You are unlikely to find this supported in other JPA
implementations, but then maybe thatÕs why you chose DataNucleus?

9

FROM : JOIN ON to another root

In strict JPA you cannot join to another "root" element. That is, you define JOIN syntax to the
following element along a relation from the previous element. DataNucleus supports joining to a
(new) "root" element potentially without any relation. See this example

SELECT p FROM Person p LEFT OUTER JOIN Address a ON p.addressName = a.name

Here we simply chose an ON clause to join the two roots.

FROM : JOIN to an embedded element

In strict JPA you cannot join to an embedded element class (of an embeddable). With DataNucleus
you can do this, and hence form queries using fields of the embeddable (not available in most other
JPA providers). See this example, where class Person has a Collection of embeddable Address
objects.

SELECT p FROM Person p LEFT OUTER JOIN p.addresses a WHERE a.name = 'Home'

FROM : Control over INNER/OUTER join for implicit joins

RDBMS : By default if you donÕt specify the JOIN to some related object in the FROM clause and
instead navigate through a 1-1/N-1 relation like "a.owner" then it will join using INNER JOIN. You
can change this default by specifying the persistence property (to apply to all queries) or query
extension datanucleus.query.jpql.navigationJoinType and set it to either "INNERJOIN" or
"LEFTOUTERJOIN". You can also set the default for the filter only using the persistence property(to
apply to all queries) or query extension datanucleus.query.jpql.navigationJoinTypeForFilter and
set it to either "INNERJOIN" or "LEFTOUTERJOIN".

Fetched Fields
By default a query will fetch fields according to their defined EAGER/LAZY setting, so fields like
primitives, wrappers, Dates, and 1-1/N-1 relations will be fetched, whereas 1-N/M-N fields will not
be fetched. JPQL allows you to include FETCH JOIN as a hint to include relation fields where
possible.

For RDBMS datastores any multi-valued (1-N/M-N) field (Collection, array) will be bulk-fetched if it is
defined to be EAGER or has a FETCH JOIN, or is placed in the current EntityGraph. By bulk-fetched
we mean that there will be a single SQL issued per collection field (hence avoiding the N+1
problem). By default this will be a single SQL per collection of the form SELECT {relatedObject
columns} FROM RELATED_TBL WHERE EXISTS (restrict to the candidate objects involved) . Note that

10

you can disable this by either not marking multi-valued fields to be fetched, or by setting the query
extension datanucleus.rdbms.query.multivaluedFetch to none (default is exists using the single
SQL per field as mentioned above).

All non-RDBMS datastores do respect this FETCH JOIN setting, since a collection/map is stored in a
single "column" in the object and so is readily retrievable.

Note that you can also make use of Entity Graphs to have fuller control over what is retrieved from
each query.

WHERE clause (filter)
The most important thing to remember when defining the filter for JPQL is that think how you
would write it in SQL, and its likely the same except for FIELD names instead of COLUMN
names . The filter has to be a boolean expression, and can include the candidate entity ,
fields/properties , literals , functions , parameters , operators and subqueries

GROUP BY/HAVING clauses
The GROUP BY construct enables the aggregation of values according to a set of properties. The
HAVING construct enables conditions to be specified that further restrict the query result. Such
conditions are restrictions upon the groups. The syntax of the GROUP BY and HAVING clauses is as
follows:

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying
the where clause, and then forming the groups and filtering them according to the HAVING clause.
The HAVING clause causes those groups to be retained that satisfy the condition of the HAVING
clause. The requirements for the SELECT clause when GROUP BY is used follow those of SQL:
namely, any item that appears in the SELECT clause (other than as an argument to an aggregate
function) must also appear in the GROUP BY clause. In forming the groups, null values are treated
as the same for grouping purposes. Grouping by an entity is permitted. In this case, the entity must
contain no serialized state fields or lob-valued state fields. The HAVING clause must specify search
conditions over the grouping items or aggregate functions that apply to grouping items. If there is
no GROUP BY clause and the HAVING clause is used, the result is treated as a single group, and the
select list can only consist of aggregate functions. When a query declares a HAVING clause, it must
always also declare a GROUP BY clause.

Some examples

11

persistence.html#entity_graphs
#jpql_entities
#jpql_fields_properties
#jpql_literals
#jpql_functions
#jpql_parameters
#jpql_operators
#jpql_subqueries

SELECT p.firstName, p.lastName FROM Person p GROUP BY p.lastName

SELECT p.firstName, p.lastName FROM Person p GROUP BY p.lastName HAVING
COUNT(p.lastName) > 1

ORDER BY clause
The ORDER BY clause allows the objects or values that are returned by the query to be ordered. The
syntax of the ORDER BY clause is

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression | result_variable {ASC | DESC}

By default your results will be returned in the order determined by the datastore, so donÕt rely on
any particular order. You can, of course, specify the order yourself. You do this using field/property
names and ASC/DESC keywords. For example

field1 ASC, field2 DESC

which will sort primarily by field1 in ascending order, then secondarily by field2 in descending
order.

Although it is not (yet) standard JPQL, DataNucleus also supports specifying a directive for where
NULL values of the ordered field/property go in the order, so the full syntax supported is

fieldName {ASC|DESC} {NULLS FIRST|NULLS LAST}

! This is only supported for a few RDBMS including H2, HSQLDB, PostgreSQL, DB2,
Oracle, Derby, Firebird, SQLServer v11+.

Fields/Properties
In JPQL you refer to fields/properties in the query by referring to the field/bean name. For example,
if you are querying a candidate entity called Product and it has a field "price", then you access it like
this

price < 150.0

Note that if you want to refer to a field/property of an entity you can prefix the field by its alias

12

p.price < 150.0

You can also chain field references if you have an entity Product (alias = p) with a field of (entity)
Inventory, which has a field name, so you could do

p.inventory.name = 'Backup'

Note that you could alternatively have introduced a join to Inventory first and then just referenced
the name field via the Inventory join alias.

Operators
The operators are listed below in order of decreasing precedence.

¥ Navigation operator (.)

¥ Arithmetic operators:

¥ +, - unary

¥ *, / multiplication and division

¥ +, - addition and subtraction

¥ Comparison operators : =, >, >=, <, !, <> (not equal), [NOT] BETWEEN, [NOT] LIKE, [NOT] IN, IS
[NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF], [NOT] EXISTS

¥ Logical operators:

¥ NOT

¥ AND

¥ OR

Literals
JPQL supports literals of the following types : Number, boolean, character, String, NULL and
temporal. For example, with a numeric literal

Query q = em. createQuery("SELECT p FROM Person p WHERE p.age = 25");

When String literals are specified using single format JPQL they should be surrounded by single-
quotes '. For example

Query q = em. createQuery("SELECT p FROM Person p WHERE p.firstName = 'John'");

When temporal literals are specified using string format JPQL they use JDBC escape syntax (see the

13

JDBC spec for full details), namely

{d 'yyyy-mm-dd'} - a Date
{t 'hh:mm:ss'} - a Time
{ts 'yyyy-mm-dd hh:mm:ss.f...'} - a Timestamp

For example

Query q = em. createQuery("SELECT p FROM Person p WHERE p.birthDate < {ts '1970-01-01
00:00:00.000000001'}");

RDBMS : Parameters .v. Literals

When considering whether to embody a literal into a JPQL query, you should consider using a
parameter instead. The advantage of using a parameter is that the generated SQL will have a '?'
rather than the value. As a result, if you are using a connection pool that supports
PreparedStatement caching, this will potentially reuse an existing statement rather than generating
a new one each time. If you only ever invoke a query with a single possible value of the parameter
then there is no advantage. If you invoke the query with multiple possible values of the parameter
then this advantage can be significant.

Parameters
In JPQL queries it is convenient to pass in parameters so we donÕt have to define the same query for
different values. LetÕs take two examples

Named Parameters :
Query q = em. createQuery("SELECT p FROM Person p WHERE p.lastName = :surname AND
p.firstName = :forename");
q. setParameter("surname", theSurname);
q. setParameter("forename", theForename);

Numbered Parameters :
Query q = em. createQuery("SELECT p FROM Person p WHERE p.lastName = ?1 AND p.firstName
= ?2");
q. setParameter(1, theSurname);
q. setParameter(2, theForename);

So in the first case we have parameters that are prefixed by : (colon) to identify them as a
parameter and we use that name when calling Query.setParameter() . In the second case we have
parameters that are prefixed by ? (question mark) and are numbered starting at 1. We then use the
numbered position when calling Query.setParameter() .

14

CASE expressions
For particular use in the result clause, you can make use of a CASE expression where you want to
return different things based on some condition(s). Like this

Query q = em. createQuery(
Ê "SELECT p.personNum, CASE WHEN p.age < 18 THEN 'Youth' WHEN p.age >= 18 AND p.age
< 65 THEN 'Adult' ELSE 'Old' END FROM Person p");

So in this case the second result value will be a String, either "Youth", "Adult" or "Old" depending on
the age of the person. The BNF structure of the JPQL CASE expression is

CASE WHEN conditional_expression THEN scalar_expression
Ê {WHEN conditional_expression THEN scalar_expression}*
Ê ELSE scalar_expression
END

JPQL Functions
JPQL provides an SQL-like query language. Just as with SQL, JPQL also supports a range of functions
to enhance the querying possibilities. The tables below also mark whether a particular method is
supported for evaluation in-memory .

!
These methods are not available for use with all of the supported datastores to be
executed in-datastore. RDBMS, in general, supports the vast majority, whilst
MongoDB, Neo4j, Cassandra support a select few methods in-datastore.

Please note that you can easily add support for other functions for evaluation "in-memory" using
this DataNucleus plugin point

Please note that you can easily add support for other functions with RDBMS datastore using this
DataNucleus plugin point

Aggregate Functions

There are a series of aggregate functions for aggregating the values of a field for all rows of the
results.

Function Name Description Stand
ard

In-
Mem
ory

COUNT(field) Returns the aggregate count of the field (Long) " "

15

#jpql_inmemory
../extensions/extensions.html#query_method_evaluator
../extensions/extensions.html#rdbms_sql_method

Function Name Description Stand
ard

In-
Mem
ory

MIN(field) Returns the minimum value of the field (type of the
field)

" "

MAX(field) Returns the maximum value of the field (type of the
field)

" "

AVG(field) Returns the average value of the field (Double) " "

SUM(field) Returns the sum of the field value(s) (Long, Double,
BigInteger, BigDecimal)

" "

String Functions

There are a series of functions to be applied to String fields.

Function Name Description Stand
ard

In-
Mem
ory

CONCAT(str_field,
str_field2 [, str_fieldX])

Returns the concatenation of the string fields " "

SUBSTRING(str_field, num1
[, num2])

Returns the substring of the string field starting at
position num1 , and optionally with the length of num2

" "

TRIM([trim_spec]
[trim_char] [FROM]
str_field)

Returns trimmed form of the string field " "

LOWER(str_field) Returns the lower case form of the string field " "

UPPER(str_field) Returns the upper case form of the string field " "

LENGTH(str_field) Returns the size of the string field (number of
characters)

" "

LOCATE(str_field1,
str_field2 [, num])

Returns position of str_field2 in str_field1 optionally
starting at num

" "

Temporal Functions

There are a series of functions for use with temporal values

Function Name Description Stand
ard

In-
Mem
ory

CURRENT_DATE Returns the current date (day month year) of the
datastore server

" "

16

Function Name Description Stand
ard

In-
Mem
ory

CURRENT_TIME Returns the current time (hour minute second) of the
datastore server

" "

CURRENT_TIMESTAMP Returns the current timestamp of the datastore server " "

YEAR(dateField) Returns the year of the specified date in timezone it
was stored

"

MONTH(dateField) Returns the month of the specified date (1-12) in
timezone it was stored.

"

MONTH_JAVA(dateField) Returns the month of the specified date (0-11) in
timezone it was stored

"

DAY(dateField) Returns the day of the month of the specified date in
timezone it was stored

"

DAY_OF_WEEK(dateField) Returns the day of the week of the specified date in
timezone it was stored (1-7, with sunday as 1)

"

HOUR(dateField) Returns the hour of the specified date in timezone it
was stored

"

MINUTE(dateField) Returns the minute of the specified date in timezone it
was stored

"

SECOND(dateField) Returns the second of the specified date in timezone it
was stored

"

Collection Functions

There are a series of functions for use with collection values

Function Name Description Stand
ard

In-
Mem
ory

INDEX(collection_field) Returns index number of the field element when that is
the element of an indexed List field.

" #

SIZE(collection_field) Returns the size of the collection field. Empty collection
will return 0

" "

Map Functions

There are a series of functions for use with maps

17

Function Name Description Stand
ard

In-
Mem
ory

KEY(map_field) Returns the key of the map " #

VALUE(map_field) Returns the value of the map " "

SIZE(map_field) Returns the size of the map field. Empty map will
return 0

" "

Arithmetic Functions

There are a series of functions for arithmetic use

Function Name Description Stand
ard

In-
Mem
ory

ABS(numeric_field) Returns the absolute value of the numeric field " "

SQRT(numeric_field) Returns the square root of the numeric field " "

MOD(num_field1,
num_field2)

Returns the modulus of the two numeric fields
(num_field1 % num_field2)

" "

ACOS(num_field) Returns the arc-cosine of a numeric field # "

ASIN(num_field) Returns the arc-sine of a numeric field # "

ATAN(num_field) Returns the arc-tangent of a numeric field # "

COS(num_field) Returns the cosine of a numeric field # "

SIN(num_field) Returns the sine of a numeric field # "

TAN(num_field) Returns the tangent of a numeric field # "

DEGREES(num_field) Returns the degrees of a numeric field # "

RADIANS(num_field) Returns the radians of a numeric field # "

CEIL(num_field) Returns the ceiling of a numeric field # "

FLOOR(num_field) Returns the floor of a numeric field # "

LOG(num_field) Returns the natural logarithm of a numeric field # "

EXP(num_field) Returns the exponent of a numeric field # "

POWER(numeric_field,
numeric_value)

Returns the numeric field to the specified power # #

ROUND(num_field[,decima
l_places])

Returns the rounded value of a numeric field
(optionally to a number of decimal places)

#

18

Other Functions

You have a further function available

Function Name Description Stand
ard

In-
Mem
ory

FUNCTION(name, [arg1
[,arg2 É]])

Executes the specified SQL function "name" with the
defined arguments. RDBMS only

" #

For example, this executes the SQL function 'date_part' (where it is available) with 2 arguments, a
Date, and a format. Clearly there are better ways of handling dates than this so it serves simply as
an example of invocation

SELECT FUNCTION('date_part' , myDate, 'YYYY-MM-DD') FROM ...

In addition, DataNucleus JPA provides support for a number of Geospatial functions .

Collection Fields
Where you have a collection field, often you want to navigate it to query based on some filter for
the element. To achieve this, you can clearly JOIN to the element in the FROM clause . Alternatively
you can use the MEMBER OF keyword. LetÕs take an example, you have a field which is a Collection
of Strings, and want to return the owner object that has an element that is "Freddie" .

Query q = em. createQuery("SELECT p.firstName, p.lastName FROM Person p WHERE 'Freddie'
MEMBER OF p.nicknames");

Beyond this, you can also make use of the collection functions and use the size of the collection for
example.

Map Fields
Where you have a map field, often you want to navigate it to query based on some filter for the key
or value. LetÕs take an example, you want to return the value for a particular key in the map of an
owner.

Query q = em. createQuery("SELECT VALUE(p.addresses) FROM Person p WHERE
KEY(p.addresses) = 'London Flat'");

Beyond this, you can also make use of the map functions and use the size of the map for example.

19

query.html#jpql_geospatial_functions
#jpql_from
#jpql_functions_collection
#jpql_functions_map

!
in the JPA spec they allow a user to interchangeably use "p.addresses" to refer to
the value of the Map. Whilst DataNucleus supports this, we advise using explicit
VALUE({field}) since it is clearer the intent and makes for more readable queries.

Subqueries

! In strict JPQL you can only have subqueries in WHERE or HAVING clauses.
DataNucleus additionally allows them in the SELECT, GROUP and ORDER clauses.

With JPQL the user has a very flexible query syntax which allows for querying of the vast majority
of data components in a single query. In some situations it is desirable for the query to utilise the
results of a separate query in its calculations. JPQL also allows the use of subqueries. HereÕs an
example

SELECT e FROM Employee e
WHERE e.salary > (SELECT avg(f.salary) FROM Employee f)

So we want to find all Employees that have a salary greater than the average salary. The subquery
must be in parentheses (brackets). Note that we have defined the subquery with an alias of "f",
whereas in the outer query the alias is "e".

ALL/ANY/SOME Expressions

One use of subqueries with JPQL is where you want to compare with some or all of a particular
expression. To give an example

SELECT emp FROM Employee emp
WHERE emp.salary > ALL (SELECT m.salary FROM Manager m WHERE m.department =
emp.department)

So this returns all employees that earn more than all managers in the same department! You can
also compare with SOME/ANY, like this

SELECT emp FROM Employee emp
WHERE emp.salary > ANY (SELECT m.salary FROM Manager m WHERE m.department =
emp.department)

So this returns all employees that earn more than any one Manager in the same department.

EXISTS Expressions

Another use of subqueries in JPQL is where you want to check on the existence of a particular
thing. For example

20

SELECT DISTINCT emp FROM Employee emp
WHERE EXISTS (SELECT emp2 FROM Employee emp2 WHERE emp2 = emp.spouse)

So this returns the employees that have a partner also employed.

Specify candidates to query over

With JPA you always query objects of the candidate type in the datastore. DataNucleus extends this
and allows you to provide a Collection of candidate objects that will be queried (rather than going
to the datastore), and it will perform the querying "in-memory". You set the candidates like this

Query query = em. createQuery("SELECT p FROM Products p WHERE ...");
((org. datanucleus. api . jpa . JPAQuery) query). getInternalQuery (). setCandidates(myCandidate
s);
List <Product> results = query. getResultList ();

Range of Results
With JPQL you can select the range of results to be returned. For example if you have a web page
and you are paginating the results of some search, you may want to get the results from a query in
blocks of 20 say, with results 0 to 19 on the first page, then 20 to 39, etc. You can facilitate this as
follows

Query q = em. createQuery("SELECT p FROM Person p WHERE p.age > 20");
q. setFirstResult (0);
q. setMaxResults(20);

So with this query we get results 0 to 19 inclusive.

Query Result
Whilst the majority of the time you will want to return instances of a candidate class, JPQL also
allows you to return customised results. Consider the following example

Query q = em. createQuery("SELECT p.firstName, p.lastName FROM Person p WHERE p.age >
20");
List <Object []> results = q. getResultList ();

this returns the first and last name for each Person meeting that filter. Obviously we may have
some container class that we would like the results returned in, so if we change the query to this

21

Query<PersonName> q = em. createQuery(
Ê "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20", PersonName.
class);
List <PersonName> results = q. getResultList ();

so each result is a PersonName, holding the first and last name. This result class needs to match one
of the following structures

¥ Constructor taking arguments of the same types and the same order as the result clause. An
instance of the result class is created using this constructor. For example

public class PersonName
{
Ê protected String firstName = null;
Ê protected String lastName = null;
Ê public PersonName(String first, String last)
Ê {
Ê this.firstName = first;
Ê this.lastName = last;
Ê }
}

¥ Default constructor, and setters for the different result columns, using the alias name for each
column as the property name of the setter. For example

public class PersonName
{
Ê protected String firstName = null;
Ê protected String lastName = null;
Ê public PersonName()
Ê {
Ê }
Ê public void setFirstName(String first) {this.firstName = first;}
Ê public void setLastName(String last) {this.lastName = last;}
}

¥ Default constructor, and a method void put(Object aliasName, Object value)

Note that if the setter property name doesnÕt match the query result component name, you should
use AS {alias} in the query so they are the same.

Tuples

A special case, where you donÕt have a result class but want to easily extract multiple columns in
the form of a Tuple JPA provides a special class javax.persistence.Tuple to supply as the result class
in the above call. From that you can get hold of the column aliases, and their values.

22

Query<PersonName> q = em. createQuery(
Ê "SELECT p.firstName, p.lastName FROM Person p WHERE p.age > 20", Tuple. class);
List <Tuple> results = q. getResultList ();
for (Tuple t : results)
{
Ê List <TupleElement> cols = t . getElements();
Ê for (TupleElement col : cols)
Ê {
Ê String colName = col . getAlias ();
Ê Object value = t . get (colname);
Ê }
}

Query Execution
There are two ways to execute a JPQL query. When you know it will return 0 or 1 results you call

Object result = query. getSingleResult ();

If however you know that the query will return multiple results, or you just donÕt know then you
would call

List results = query. getResultList ();

!
When using RDBMS all parts of a query are evaluated in-datastore . When using
LDAP, Excel, ODF, XML, JSON, GoogleStorage, AmazonS3 any query filter/ordering
etc is evaluated in-memory . When using Neo4j, HBase, MongoDB and Cassandra
any query filter/ordering etc are evaluated in-datastore where possible, with the
remainder evaluated in-memory .

JPQL In-Memory queries

The typical use of a JPQL query is to translate it into the native query language of the datastore and
return objects matched by the query. For many (usually non-RDBMS) datastores it is simply
impossible to support the full JPQL syntax in the datastore native query language and so it is
necessary to evaluate the query in-memory. This means that we evaluate as much as we can in the
datastore and then instantiate those objects and evaluate further in-memory. Here we document
the current capabilities of in-memory evaluation in DataNucleus.

¥ Subqueries using ALL, ANY, SOME, EXISTS are not currently supported for use in-memory.

¥ MEMBER OF syntax is not currently supported for use in-memory.

23

To enable evaluation in memory you specify the query hint
datanucleus.query.evaluateInMemory to true as follows

query. setHint ("datanucleus.query.evaluateInMemory" , "true");

$
In-memory JPQL evaluation does not support JOINs currently, or correlated
subqueries. You should omit such things from your query and try to evaluate
them manually in your own code.

Named Query
With the JPA API you can either define a query at runtime, or define it in the MetaData/annotations
for a class and refer to it at runtime using a symbolic name. This second option means that the
method of invoking the query at runtime is much simplified. To demonstrate the process, lets say
we have a class called Product (something to sell in a store). We define the JPA Meta-Data for the
class in the normal way, but we also have some query that we know we will require, so we define
the following in the Meta-Data.

<entity class= "Product" >
Ê ...
Ê <named-query name="SoldOut" ><![CDATA[
Ê SELECT p FROM Product p WHERE p.status = "Sold Out"
Ê]]> </named-query>
</entity>

or using annotations

@Entity
@NamedQuery(name="SoldOut" , query="SELECT p FROM Product p WHERE p.status = 'Sold
Out'")
public class Product {...}

! DataNucleus also supports specifying this using @NamedQuery annotation in non-
Entity classes. This is beyond the JPA spec, but is very useful in real applications.

Above we have a JPQL query called "SoldOut" defined for the class Product that returns all Products
(and subclasses) that have a status of "Sold Out". To execute this query we would do as follows

Query query = em. createNamedQuery("SoldOut");
List <Product> results = query. getResultList ();

24

Saving a Query as a Named Query
You can save a query as a named query like this

Query q = em. createQuery("SELECT p FROM Product p WHERE ...");
...
emf. addNamedQuery("MyQuery", q);

DataNucleus also allows you to create a query, and then save it as a "named" query directly with the
query. You do this as follows

Query q = em. createQuery("SELECT p FROM Product p WHERE ...");
((org. datanucleus. api . jpa . JPAQuery) q). saveAsNamedQuery("MyQuery");

With both methods you can thereafter access the query via

Query q = em. createNamedQuery("MyQuery");

JPQL Strictness
By default DataNucleus allows some extensions in syntax over strict JPQL (as defined by the JPA
spec). To allow only strict JPQL you can do as follows

Query query = em. createQuery(...);
query. setHint ("datanucleus.jpql.strict" , "true");

JPQL : SQL Generation for RDBMS
With a JPQL query running on an RDBMS the query is compiled into SQL. Here we give a few
examples of what SQL is generated. You can of course try this for yourself observing the content of
the DataNucleus log, or by using the following vendor extension

Query q = em. createQuery(...);
List results = q. getResultList ();

String sql = (String)((org. datanucleus. api . jpa . JPAQuery) q). getNativeQuery();

For non-RDBMS datastores this can return other object types.

In JPQL you specify a candidate class and its alias (identifier). In addition you can specify joins with
their respective alias. The DataNucleus implementation of JPQL will preserve these aliases in the

25

generated SQL.

JPQL:
SELECT p FROM Person p INNER JOIN p.bestFriend AS B

SQL:
SELECT P.ID
FROM PERSON P INNER JOIN PERSON B ON B.ID = P.BESTFRIEND_ID

With the JPQL MEMBER OF syntax this is typically converted into an EXISTS query.

JPQL:
SELECT DISTINCT p FROM Person p WHERE :param MEMBER OF p.friends

SQL:
SELECT DISTINCT P.ID FROM PERSON P
WHERE EXISTS (
Ê SELECT 1 FROM PERSON_FRIENDS P_FRIENDS, PERSON P_FRIENDS_1
Ê WHERE P_FRIENDS.PERSON_ID = P.ID
Ê AND P_FRIENDS_1.GLOBAL_ID = P_FRIENDS.FRIEND_ID
Ê AND 101 = P_FRIENDS_1.ID)

JPQL DELETE Queries
The JPA specification defines a mode of JPQL for deleting objects from the datastore. NOTE: his will
not invoke any cascading defined on a field basis, with only datastore-defined Foreign Keys
cascading. Additionally related objects already in-memory will not be updated.

DELETE Syntax

The syntax for deleting records is very similar to selecting them

DELETE FROM [<candidate-class> [[AS] {alias}]] [WHERE <filter>]

The "keywords" in the query are shown in UPPER CASE, and are case-insensitive.

Query query = em. createQuery("DELETE FROM Person p WHERE firstName = 'Fred'");
int numRowsDeleted = query. executeUpdate();

JPQL UPDATE Queries
The JPA specification defines a mode of JPQL for updating objects in the datastore.

26

!
This will not invoke any cascading defined on a field basis, with only datastore-
defined Foreign Keys cascading. Additionally related objects already in-memory
will not be updated

UPDATE Syntax

The syntax for updating records is very similar to selecting them

UPDATE [<candidate-class> [[AS] {alias}]] SET item1=value1, item2=value2 [WHERE
<filter>]

The "keywords" in the query are shown in UPPER CASE, and are case-insensitive.

Query query = em. createQuery("UPDATE Person p SET p.salary = 10000 WHERE age = 18");
int numRowsUpdated = query. executeUpdate();

In strict JPA you cannot use a subquery in the UPDATE clause. With DataNucleus JPA you can do
this so, for example, you can set a field to the result of a subquery.

Query query = em. createQuery("UPDATE Person p SET p.salary = (SELECT MAX(p2.salary)
FROM Person p2 WHERE age < 18) WHERE age = 18");

JPQL BNF Notation
The BNF defining the JPQL query language is shown below.

QL_statement ::= select_statement | update_statement | delete_statement
select_statement ::= select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::= FROM identification_variable_declaration
Ê {, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join | fetch_join
}*
range_variable_declaration ::= entity_name [AS] identification_variable

join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN

27

join_association_path_expression ::= join_collection_valued_path_expression |
join_single_valued_path_expression
join_collection_valued_path_expression::=
Ê
identification_variable.{single_valued_embeddable_object_field.}*collection_valued_fie
ld
join_single_valued_path_expression::=
Ê
identification_variable.{single_valued_embeddable_object_field.}*single_valued_object_
field
collection_member_declaration ::=
Ê IN (collection_valued_path_expression) [AS] identification_variable
qualified_identification_variable ::= KEY(identification_variable) |
VALUE(identification_variable) |
Ê ENTRY(identification_variable)
single_valued_path_expression ::= qualified_identification_variable |
Ê state_field_path_expression | single_valued_object_path_expression
general_identification_variable ::= identification_variable |
KEY(identification_variable) |
Ê VALUE(identification_variable)

state_field_path_expression ::=
general_identification_variable.{single_valued_object_field.}*state_field
single_valued_object_path_expression ::=
Ê general_identification_variable.{single_valued_object_field.}*
single_valued_object_field
collection_valued_path_expression ::=
Ê
general_identification_variable.{single_valued_object_field.}*collection_valued_field

update_clause ::= UPDATE entity_name [[AS] identification_variable] SET update_item {,
update_item}*
update_item ::= [identification_variable.]{state_field | single_valued_object_field} =
new_value
new_value ::= scalar_expression | simple_entity_expression | NULL

delete_clause ::= DELETE FROM entity_name [[AS] identification_variable]

select_clause ::= SELECT [DISTINCT] select_item {, select_item}*
select_item ::= select_expression [[AS] result_variable]
select_expression ::= single_valued_path_expression | scalar_expression |
aggregate_expression |
Ê identification_variable | OBJECT(identification_variable) | constructor_expression
constructor_expression ::= NEW constructor_name (constructor_item {,
constructor_item}*)
constructor_item ::= single_valued_path_expression | scalar_expression |
aggregate_expression |
Ê identification_variable

aggregate_expression ::= { AVG | MAX | MIN | SUM } ([DISTINCT]
state_field_path_expression) |

28

Ê COUNT ([DISTINCT] identification_variable | state_field_path_expression |
Ê single_valued_object_path_expression)

where_clause ::= WHERE conditional_expression
groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable
having_clause ::= HAVING conditional_expression
orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression | result_variable [ASC | DESC]

subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause]
[having_clause]
subquery_from_clause ::= FROM subselect_identification_variable_declaration
Ê {, subselect_identification_variable_declaration | collection_member_declaration}*

subselect_identification_variable_declaration ::= identification_variable_declaration
|
Ê derived_path_expression [AS] identification_variable {join}*|
Ê derived_collection_member_declaration
derived_path_expression ::=
Ê
superquery_identification_variable.{single_valued_object_field.}*collection_valued_fie
ld |
Ê
superquery_identification_variable.{single_valued_object_field.}*single_valued_object_
field
derived_collection_member_declaration ::=
Ê IN
superquery_identification_variable.{single_valued_object_field.}*collection_valued_fie
ld
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::= single_valued_path_expression | scalar_expression |
aggregate_expression |
Ê identification_variable
scalar_expression ::= simple_arithmetic_expression | string_primary | enum_primary |
Ê datetime_primary | boolean_primary | case_expression | entity_type_expression
conditional_expression ::= conditional_term | conditional_expression OR
conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression |
Ê in_expression | like_expression | null_comparison_expression |
Ê empty_collection_comparison_expression | collection_member_expression |
exists_expression
between_expression ::=
Ê arithmetic_expression [NOT] BETWEEN arithmetic_expression AND
arithmetic_expression |
Ê string_expression [NOT] BETWEEN string_expression AND string_expression |
Ê datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression
in_expression ::= {state_field_path_expression | type_discriminator} [NOT] IN

29

Ê { (in_item {, in_item}*) | (subquery) | collection_valued_input_parameter }
in_item ::= literal | single_valued_input_parameter
like_expression ::= string_expression [NOT] LIKE pattern_value [ESCAPE
escape_character]
null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS
[NOT] NULL

empty_collection_comparison_expression ::= collection_valued_path_expression IS [NOT]
EMPTY
collection_member_expression ::= entity_or_value_expression [NOT] MEMBER [OF]
collection_valued_path_expression
entity_or_value_expression ::= single_valued_object_path_expression |
state_field_path_expression |
Ê simple_entity_or_value_expression
simple_entity_or_value_expression ::= identification_variable | input_parameter |
literal
exists_expression::= [NOT] EXISTS (subquery)
all_or_any_expression ::= { ALL | ANY | SOME} (subquery)
comparison_expression ::=
Ê string_expression comparison_operator {string_expression | all_or_any_expression}
|
Ê boolean_expression { =|<>} {boolean_expression | all_or_any_expression} |
Ê enum_expression { =|<>} {enum_expression | all_or_any_expression} |
Ê datetime_expression comparison_operator
Ê {datetime_expression | all_or_any_expression} |
Ê entity_expression { = | <>} {entity_expression | all_or_any_expression} |
Ê arithmetic_expression comparison_operator
Ê {arithmetic_expression | all_or_any_expression} |
Ê entity_type_expression { =|<>} entity_type_expression}
comparison_operator ::= = | > | >= | < | <= | <>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::= arithmetic_term | simple_arithmetic_expression { + |
- } arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::= state_field_path_expression | numeric_literal |
Ê (simple_arithmetic_expression) | input_parameter | functions_returning_numerics |
Ê aggregate_expression | case_expression
string_expression ::= string_primary | (subquery)
string_primary ::= state_field_path_expression | string_literal |
Ê input_parameter | functions_returning_strings | aggregate_expression |
case_expression
datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::= state_field_path_expression | input_parameter |
functions_returning_datetime |
Ê aggregate_expression | case_expression | date_time_timestamp_literal
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::= state_field_path_expression | boolean_literal | input_parameter |
Ê case_expression
enum_expression ::= enum_primary | (subquery)

30

enum_primary ::= state_field_path_expression | enum_literal | input_parameter |
case_expression
entity_expression ::= single_valued_object_path_expression | simple_entity_expression
simple_entity_expression ::= identification_variable | input_parameter
entity_type_expression ::= type_discriminator | entity_type_literal | input_parameter
type_discriminator ::= TYPE(identification_variable |
single_valued_object_path_expression |
Ê input_parameter)
functions_returning_numerics::= LENGTH(string_primary) |
Ê LOCATE(string_primary, string_primary[, simple_arithmetic_expression]) |
Ê ABS(simple_arithmetic_expression) |
Ê SQRT(simple_arithmetic_expression) |
Ê MOD(simple_arithmetic_expression, simple_arithmetic_expression) |
Ê SIZE(collection_valued_path_expression) |
Ê INDEX(identification_variable)
functions_returning_datetime ::= CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP

functions_returning_strings ::=
Ê CONCAT(string_primary, string_primary {, string_primary}*) |
Ê SUBSTRING(string_primary, simple_arithmetic_expression [,
simple_arithmetic_expression]) |
Ê TRIM([[trim_specification] [trim_character] FROM] string_primary) |
Ê LOWER(string_primary) |
Ê UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH
case_expression ::= general_case_expression | simple_case_expression |
coalesce_expression |
Ê nullif_expression
general_case_expression::= CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause::= WHEN conditional_expression THEN scalar_expression
simple_case_expression::=
Ê CASE case_operand simple_when_clause {simple_when_clause}*
Ê ELSE scalar_expression
Ê END
case_operand::= state_field_path_expression | type_discriminator
simple_when_clause::= WHEN scalar_expression THEN scalar_expression
coalesce_expression::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression::= NULLIF(scalar_expression, scalar_expression)

Geospatial Functions

When querying spatial data you can make use of a set of spatial methods on the various Java
geometry types. The list contains all of the functions detailed in Section 3.2 of the OGC Simple
Features specification . Additionally DataNucleus provides some commonly required methods like
bounding box test and datastore specific functions. The following tables list all available functions
as well as information about which RDBMS implement them. An entry in the "Result" column
indicates, whether the funcion may be used in the result part of a JPQL query.

31

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

Functions for Constructing a Geometry Value given its Well-known Text
Representation (OGC SF 3.2.6)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.geomFromText(String
, Integer)

Construct a Geometry value given its well-
known textual representation.

OGC SF # " " "

Spatial.pointFromText(String
, Integer)

Construct a Point. OGC SF # " " "

Spatial.lineFromText(String,
Integer)

Construct a LineString. OGC SF # " " "

Spatial.polyFromText(String,
Integer)

Construct a Polygon. OGC SF # " " "

Spatial.mPointFromText(Stri
ng, Integer)

Construct a MultiPoint. OGC SF # " " "

Spatial.mLineFromText(Strin
g, Integer)

Construct a MultiLineString. OGC SF # " " "

Spatial.mPolyFromText(Strin
g, Integer)

Construct a MultiPolygon. OGC SF # " " "

Spatial.geomCollFromText(St
ring, Integer)

Construct a GeometryCollection. OGC SF # " " "

[1] These functions canÕt be used in the return part because itÕs not possible to determine the return
type from the parameters.

Functions for Constructing a Geometry Value given its Well-known Binary
Representation (OGC SF 3.2.7)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.geomFromWKB(Strin
g, Integer)

Construct a Geometry value given its well-
known binary representation.

OGC SF # " " "

Spatial.pointFromWKB(Strin
g, Integer)

Construct a Point. OGC SF # " " "

Spatial.lineFromWKB(String,
Integer)

Construct a LineString. OGC SF # " " "

32

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.polyFromWKB(String
, Integer)

Construct a Polygon. OGC SF # " " "

Spatial.mPointFromWKB(Stri
ng, Integer)

Construct a MultiPoint. OGC SF # " " "

Spatial.mLineFromWKB(Stri
ng, Integer)

Construct a MultiLineString. OGC SF # " " "

Spatial.mPolyFromWKB(Stri
ng, Integer)

Construct a MultiPolygon. OGC SF # " " "

Spatial.geomCollFromWKB(S
tring, Integer)

Construct a GeometryCollection. OGC SF # " " "

[1] These functions canÕt be used in the return part because itÕs not possible to determine the return
type from the parameters.

Functions on Type Geometry (OGC SF 3.2.10)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.dimension(Geometry) Returns the dimension of the Geometry. OGC SF " " " "

Spatial.geometryType(Geom
etry)

Returns the name of the instantiable
subtype of Geometry.

OGC SF " " " "

Spatial.asText(Geometry) Returns the well-known textual
representation.

OGC SF " " " "

Spatial.asBinary(Geometry) Returns the well-known binary
representation.

OGC SF # " " "

Spatial.srid(Geometry) Returns the Spatial Reference System ID
for this Geometry.

OGC SF " " " "

Spatial.isEmpty(Geometry) TRUE if this Geometry corresponds to the
empty set.

OGC SF %
[1]

" " "

Spatial.isSimple(Geometry) TRUE if this Geometry is simple, as
defined in the Geometry Model.

OGC SF %
[1]

" " "

Spatial.boundary(Geometry) Returns a Geometry that is the
combinatorial boundary of the Geometry.

OGC SF " " " "

33

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.envelope(Geometry) Returns the rectangle bounding Geometry
as a Polygon.

OGC SF " " " "

[1] Oracle does not allow boolean expressions in the SELECT-list.

Functions on Type Point (OGC SF 3.2.11)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.x(Point) Returns the x-coordinate of the Point as a
Double.

OGC SF " " " "

Spatial.y(Point) Returns the y-coordinate of the Point as a
Double.

OGC SF " " " "

Functions on Type Curve (OGC SF 3.2.12)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.startPoint(Curve)) Returns the first point of the Curve. OGC SF " " " "

Spatial.endPoint(Curve)) Returns the last point of the Curve. OGC SF " " " "

Spatial.isRing(Curve) Returns TRUE if Curve is closed and
simple. .

OGC SF %
[1]

" " "

[1] Oracle does not allow boolean expressions in the SELECT-list.

Functions on Type Curve and Type MultiCurve (OGC SF 3.2.12, 3.2.17)

34

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.isClosed(Curve),
Spatial.isClosed(MultiCurve)

Returns TRUE if Curve is closed, i.e., if
StartPoint(Curve) = EndPoint(Curve).

OGC SF %
[1]

" " "

Spatial.length(Curve),
Spatial.length(MultiCurve)

Returns the length of the Curve. OGC SF " " " "

[1] Oracle does not allow boolean expressions in the SELECT-list.

Functions on Type LineString (OGC SF 3.2.13)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.numPoints(LineStrin
g)

Returns the number of points in the
LineString.

OGC SF " " " "

Spatial.pointN(LineString,
Integer)

Returns Point n. OGC SF " " " "

Functions on Type Surface and Type MultiSurface (OGC SF 3.2.14, 3.2.18)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.centroid(Surface),
centroid(MultiSurface)

Returns the centroid of Surface, which
may lie outside of it.

OGC SF " " #
[1]

"

Spatial.pointOnSurface(Surfa
ce),
pointOnSurface(MultiSurfac
e)

Returns a Point guaranteed to lie on the
surface.

OGC SF " " #
[1]

"

Spatial.area(Surface),
area(MultiSurface)

Returns the area of Surface. OGC SF " " " "

[1] MySQL does not implement these functions.

35

Functions on Type Polygon (OGC SF 3.2.15)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.exteriorRing(Polygon
)

Returns the exterior ring of Polygon. OGC SF " " " "

Spatial.numInteriorRing(Pol
ygon)

Returns the number of interior rings. OGC SF " " " "

Spatial.interiorRingN(Polygo
n, Integer)

Returns the nth interior ring. OGC SF " " " "

Functions on Type GeomCollection (OGC SF 3.2.16)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.numGeometries(Geo
mCollection)

Returns the number of geometries in the
collection.

OGC SF " " " "

Spatial.geometryN(GeomColl
ection, Integer)

Returns the nth geometry in the
collection.

OGC SF " " " "

Functions that test Spatial Relationships (OGC SF 3.2.19)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.equals(Geometry,
Geometry)

TRUE if the two geometries are spatially
equal.

OGC SF % " %
[2]

"

Spatial.disjoint(Geometry,
Geometry)

TRUE if the two geometries are spatially
disjoint.

OGC SF % " %
[2]

"

Spatial.touches(Geometry,
Geometry)

TRUE if the first Geometry spatially
touches the other Geometry.

OGC SF % " %
[2]

"

Spatial.within(Geometry,
Geometry)

TRUE if first Geometry is completely
contained in second Geometry.

OGC SF % " %
[2]

"

36

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.overlaps(Geometry,
Geometry)

TRUE if first Geometries is spatially
overlapping the other Geometry.

OGC SF % " %
[2]

"

Spatial.crosses(Geometry,
Geometry)

TRUE if first Geometry crosses the other
Geometry.

OGC SF % " #
[3]

"

Spatial.intersects(Geometry,
Geometry)

TRUE if first Geometry spatially intersects
the other Geometry.

OGC SF % " %
[2]

"

Spatial.contains(Geometry,
Geometry)

TRUE if second Geometry is completely
contained in first Geometry.

OGC SF % " %
[2]

"

Spatial.relate(Geometry,
Geometry, String)

TRUE if the spatial relationship specified
by the patternMatrix holds.

OGC SF % " " "

[1] Oracle does not allow boolean expressions in the SELECT-list. [2] MySQL does not implement
these functions according to the specification. They return the same result as the corresponding
MBR-based functions.

Function on Distance Relationships (OGC SF 3.2.20)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.distance(Geometry,
Geometry)

Returns the distance between the two
geometries.

OGC SF " " "
[1]

"

[1] MariaDB 5.3.3+ implements this.

Functions that implement Spatial Operators (OGC SF 3.2.21)

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.intersection(Geometr
y, Geometry)

Returns a Geometry that is the set
intersection of the two geometries.

OGC SF " " # "

37

Method Description Specifi
cation

Re
sul
t
[1]

Po
st
GI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.difference(Geometry,
Geometry)

Returns a Geometry that is the closure of
the set difference of the two geometries.

OGC SF " " # "

Spatial.union(Geometry,
Geometry)

Returns a Geometry that is the set union
of the two geometries.

OGC SF " " # "

Spatial.symDifference(Geom
etry, Geometry)

Returns a Geometry that is the closure of
the set symmetric difference of the two
geometries.

OGC SF " " # "

Spatial.buffer(Geometry,
Double)

Returns as Geometry defined by buffering
a distance around the Geometry.

OGC SF " " # "

Spatial.convexHull(Geometr
y)

Returns a Geometry that is the convex
hull of the Geometry.

OGC SF " " # "

[1] These functions are currently not implemented in MySQL. They may appear in future releases.

Test whether the bounding box of one geometry intersects the bounding
box of another

These functions are only available to specific RDBMS.

Method Description Res
ult
[1]

Pos
tGI
S

My
SQ
L

Or
acl
e
Sp
ati
al

Spatial.bboxTest(Geometry,
Geometry)

Returns TRUE if if the bounding box of the
first Geometry overlaps second GeometryÕs
bounding box

%
[1]

" " "

[1] Oracle does not allow boolean expressions in the SELECT-list.

PostGIS Spatial Operators

! These functions are only supported on PostGIS.

38

